186 research outputs found

    Minor-groove width and accessibility in B-DNA drug and protein complexes

    Get PDF
    AbstractA new definition is presented for minor-groove width in double-helical B-DNA structures. This uses interstrand H4′…H5′ rather than P…P distances. It is shown by examination of various oligonucleotide crystal structures that these H4′…H5′ distances are a sensitive measure of minor-groove drug and protein binding, since these hydrogen atoms are in direct non-bonded contact with such bound ligands

    The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements

    Get PDF
    We have carried out a survey of potential quadruplex structure sequences (PQSS), which occur in the immediate upstream region (500 bp) of human genes. By examining the number and distribution of these we have established that there is a clear link between them and the occurrence of the SP1-binding element ‘GGGCGG’, such that a large number of upstream PQSS incorporate the SP1-binding element

    Highly prevalent putative quadruplex sequence motifs in human DNA

    Get PDF
    We report here the results of a systematic search for the existence and prevalence of potential intramolecular G-quadruplex forming sequences in the human genome. We have also examined the tendency for particular sequences of ‘loop’ regions to occur in particular positions with respect to the G-tracts in a quadruplex. Using arithmetic ratio and probability techniques we have discovered frequent and systematic occurrence of certain sequence types, the most prominent being a potential quadruplex containing CCTGT in the first ‘loop’ position. Being able to highlight types of potential quadruplex sequences in G-rich regions is an important step in searching for biologically relevant sequences and finding their function

    QN-302 demonstrates opposing effects between i-motif and G-quadruplex DNA structures in the promoter of the S100P gene

    Get PDF
    GC-rich sequences can fold into G-quadruplexes and i-motifs and are known to control gene expression in many organisms. The potent G-quadruplex experimental anticancer drug QN-302 down-regulates a number of cancer-related genes, in particular S100P. Here we show this ligand has strong opposing effects with i-motif DNA structures and is one of the most potent i-motif destabilising agents reported to date. QN-302 down-regulates the expression of numerous cancer-related genes by pan-quadruplex targeting. QN-302 exhibits exceptional combined synergistic effects compared to many other G-quadruplex and i-motif interacting compounds. This work further emphasises the importance of considering G-quadruplex and i-motif DNA structures as one dynamic system

    Conformational effects of nucleotide exchange in ras p21 proteins as studied by fluorescence spectroscopy

    Get PDF
    AbstractThe intrinsic fluorescence properties of the oncogene protein p21N-ras, p21H-ras and one of its transforming mutants, p21N-ras (Va1112), have been investigated. A mutant containing a single tryptophan at position 28 in p21H-ras (Trp28) has been specifically engineered to provide a probe of protein conformation on nucleotide binding. The proteins produced essentially similar circular dichroism spectra typical of alpha/beta proteins. A decrease in the intensity of the fluorescence emission spectrum due to tyrosine occurred on GDP/GTP nucleotide exchange in the native and mutant proteins. Selective excitation of the single tryptophan in p21 produced a decrease in fluorescence intensity which was accompanied by a blue shift in the wavelength of maximum emission on nucleotide exchange. A reduction in the residual Mg2+ ion concentration enhanced this effect

    Synergistic binding of actinomycin D and echinomycin to DNA mismatch sites and their combined anti-tumour effects

    Get PDF
    Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches

    Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism

    Get PDF
    The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use
    • …
    corecore