176 research outputs found

    A1 antagonism in asthma: better than coffee?

    Get PDF

    In Vivo Assessment of Coronary Flow and Cardiac Function After Bolus Adenosine Injection in Adenosine Receptor Knockout Mice

    Get PDF
    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B. In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((p/4) 9 D2 9 VTI 9 HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states

    In Vivo Assessment of Coronary Flow and Cardiac Function After Bolus Adenosine Injection in Adenosine Receptor Knockout Mice

    Get PDF
    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B. In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((p/4) 9 D2 9 VTI 9 HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states

    Enhanced mast cell activation in mice deficient in the A2b adenosine receptor

    Get PDF
    Antigen-mediated cross-linking of IgE bound to mast cells via the high affinity receptor for IgE triggers a signaling cascade that results in the release of intracellular calcium stores, followed by an influx of extracellular calcium. The collective increase in intracellular calcium is critical to the release of the granular contents of the mast cell, which include the mediators of acute anaphylaxis. We show that the sensitivity of the mast cell to antigen-mediated degranulation through this pathway can be dramatically influenced by the A2b adenosine receptor. Loss of this Gs-coupled receptor on mouse bone marrow–derived mast cells results in decreased basal levels of cyclic AMP and an excessive influx of extracellular calcium through store-operated calcium channels following antigen activation. Mice lacking the A2b receptor display increased sensitivity to IgE-mediated anaphylaxis. Collectively, these findings show that the A2b adenosine receptor functions as a critical regulator of signaling pathways within the mast cell, which act in concert to limit the magnitude of mast cell responsiveness when antigen is encountered

    Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A1 and A2B adenosine receptors.

    Get PDF
    BACKGROUND AND PURPOSE: Stimulation of the A1 adenosine receptor and angiotensin II receptor type-1 (AT1 receptor) causes vasoconstriction through activation of cytochrome P450 4A (CYP4A) and ERK1/2. Thus, we hypothesized that acute angiotensin II activation alters the vasomotor response induced by the non-selective adenosine receptor agonist, NECA, in mouse mesenteric arteries (MAs). EXPERIMENTAL APPROACH: We used a Danish Myo Technology wire myograph to measure muscle tension in isolated MAs from wild type (WT), A1 receptor and A2B receptor knockout (KO) mice. Western blots were performed to determine the expression of AT1 receptors and CYP4A. KEY RESULTS: Acute exposure (15 min) to angiotensin II attenuated the NECA-dependent vasodilatation and enhanced vasoconstriction. This vasoconstrictor effect of angiotensin II in NECA-treated MAs was abolished in A1 receptor KO mice and in WT mice treated with the A1 receptor antagonist DPCPX, CYP4A inhibitor HET0016 and ERK1/2 inhibitor PD98059. In MAs from A2B receptor KO mice, the vasoconstrictor effect of angiotensin II on the NECA-induced response was shown to be dependent on A1 receptors. Furthermore, in A2B receptor KO mice, the expression of AT1 receptors and CYP4A was increased and the angiotensin II-induced vasoconstriction enhanced. In addition, inhibition of KATP channels with glibenclamide significantly reduced NECA-induced vasodilatation in WT mice. CONCLUSIONS AND IMPLICATIONS: Acute angiotensin II stimulation enhanced A1 receptor-dependent vasoconstriction and inhibited A2B receptor-dependent vasodilatation, leading to a net vasoconstriction and altered vasomotor response to NECA in MAs. This interaction may be important in the regulation of BP

    Failed Species, Innominate Forms, and the Vain Search for Species Limits: Cryptic Diversity in Dusky Salamanders (\u3ci\u3eDesmognathus\u3c/i\u3e) of Eastern Tennessee

    Get PDF
    Cytochrome B sequences and allozymes reveal complex patterns of molecular variation in dusky salamander (Desmognathus) populations in eastern Tennessee. One group of allozymically distinctive populations, which we refer to as the Sinking Creek form (SCF), combines morphological attributes of Desmognathus fuscus with cytB sequences characteristic of Desmognathus carolinensis. This form is abruptly replaced by D. fuscus just north of Johnson City, TN with no evidence of either sympatry or gene exchange. To the south, allozymic markers indicate a broad zone of admixture with populations characterized by distinct cytB sequences and that may or may not be ultimately referable to Desmognathus conanti. A third distinctive group of populations, which we refer to as the Lemon Gap form (LGF), occurs in the foothills of the Great Smoky and southern Bald Mountains and exchanges genes with Desmognathus santeetlah along the escarpment of the Great Smokies, D. carolinensis in the southern Bald Mountains, and populations of a different haplotype clade in the Ridge and Valley. We treat all these as innominate forms that may represent failed species, recognizing that it may never be possible to reconcile species limits with patterns of phylogeny, morphology, and gene exchange in these salamanders. © 2013 The Authors

    A National Perspective on the Status of ICT in the Australian Construction Industry

    Get PDF
    The Cooperative Research Centre for Construction Innovation (CRCCI) research project 2001-008-C: ‘Project Team Integration: Communication, Coordination and Decision Support', is supported by a number of Australian industry, government and university based project partners including: Queensland University of Technology (QUT); Commonwealth Scientific Industrial Research Organisation (CSIRO), University of Newcastle; Queensland Department of Public Works (QDPW); and the Queensland Department of Main Roads (QDMR). Supporting the project’s research aims and objectives, this report investigates the current status of ICT within the Australian construction industry through survey analysis and discussion. The topics investigated include ICT uptake, ICT training and ICT implementation Drivers/Barriers

    Functional and RNA Expression Profile of Adenosine Receptor Subtypes in Mouse Mesenteric Arteries

    Get PDF
    Concentration–response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10−5 to 10−4 M) and NECA (10−6 to 10−5 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10−6 to 10−4 and NECA at 10−8 to 10−5 M. The CCPA induced a significant constriction at 10−8 and 10−7 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10−7 to 10−5 M) in WT and no response in A2BKO except at 10−5 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10−7 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10−5 M of L-NAME, 10−6 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs
    • …
    corecore