46 research outputs found

    An Integrated Interdisciplinary Faculty-Student Learning Community Focused on Water Issues: A Case Study

    Get PDF
    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, Water as Life, Death, and Power, brought together topics from the fields of anthropology, biology and chemistry to explore water rights, access to clean water, and water treatment methods. Students enrolled in the course developed projects related to a variety of local and global water issues to present real-world solutions at a university-wide student research showcase. This article describes how we organized the learning community, composed of students, faculty, and staff, and outlines the training process of developing a sense of community, content integration, and interdisciplinary teaching techniques. Cathy Willermet is a Professor of Anthropology at Central Michigan University. Eron Drake is the Assistant Director of the Faculty Center for Innovative Teaching at Central Michigan University. Anja Mueller is a Professor of Chemistry at Central Michigan University. Stephen J. Juris is a Professor of Biology at Central Michigan University. Pratik Chhetri is a graduate student and a member of Universities Allied for Essential Medicines (UAEM) at Central Michigan University. Samik Upadhaya is a graduate student and a member of UAEM at Central Michigan University

    Water as life, death, and power: Building an integrated interdisciplinary course combining perspectives from anthropology, biology, and chemistry

    Get PDF
    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, “Water as Life, Death, and Power”, brought together topics from the fields of anthropology, biology and chemistry to explore water rights, access to clean water, and water treatment methods. Students enrolled in the course developed interdisciplinary projects related to a variety of local and global water issues to present real-world solutions at a university-wide student research showcase. This article describes the process by which the faculty learning community designed the course as a truly integrated whole, and reflects on the challenges and rewards of teaching a course in this way

    Assessing Interdisciplinary Learning and Student Activism in a Water Issues Course

    Get PDF
    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, “Water as Life, Death, and Power”, brought together issues from the fields of anthropology, biology and chemistry to explore water rights, access to clean water, and water treatment methods. Students enrolled in the course developed interdisciplinary projects related to a variety of local and global water issues to present real-world solutions at a university-wide student research showcase. This article reports the assessment outcomes of the course, measuring changes in both interdisciplinary learning and levels of student activism

    Comparing Common Techniques for Calculating Parasite Prevalence

    Get PDF
    Raccoons (Procyon lotor) are the final host for raccoon roundworms (Baylisascaris procyonis). Raccoon roundworm is the leading cause of a dangerous neurological disease, known as larva migrans encephalopathy. Diagnostic tools for detecting the presence of B. procyonis within a raccoon population include necropsy, fecal flotation, and latrine analysis. Necropsies yield the highest measure of prevalence, with fecal flotation and latrine analysis often underestimating infection rates. We necropsied 225 raccoons gathered from 10 townships of Clark and Greene Counties in Ohio. We collected fecal samples from 95 raccoons negative for B. procyonis at necropsy. We suspended the feces in Sheather’s solution to float any eggs, and prepared slides from this solution. Nearly 14% of raccoons negative at necropsy for B. procyonis possessed eggs in their feces. We used a chi squared test for equality of distributions to determine the likelihood that a positive fecal analysis is related to B. procyonis prevalence or to the area in which the raccoon was trapped. These data will help us determine how well fecal analyses estimate parasite prevalence

    Does Baylisascaris procyonis Phylogeny Correlate with That of the Raccoon (Procyon lotor)

    Get PDF
    Baylisacaris procyonis, commonly known as the raccoon roundworm, is a parasite that inhabits the small intestine of the North American raccoon (Procyon lotor). Although humans do not typically become the definitive host, humans can become infected through handling soil containing eggs. B. procyonis can induce serious health complications in cases of human infection, including degenerative retinal and behavioral changes, coma, and even death. High prevalence of B. procyonis in a raccoon population increases the probability of transference to human hosts. In our study, we analyzed the genetic structure of B. procyonis harvested from raccoons of southwestern Ohio, and compared this to the genetic structure of the raccoons they inhabited. It is our hypothesis that the genetic structuring of the roundworms is the same as the genetic structuring of the raccoons. We isolated DNA from the roundworms using the method outlined in the DNA Minikit (Qiagen). Our research team isolated DNA from each roundworm sample and sent it to the Plant-Microbe Genomics Facility at The Ohio State University for gene amplification and sequencing. We built phylogenetic trees using these sequences, and compared these trees to some constructed for the raccoons. The correlations drawn between the raccoon and B. procyonis phylogenetic trees will help us better understand the relationship between the two species

    Baylisascaris procyonis Impacts Raccoon (Procyon lotor) Diets

    Get PDF
    Raccoons (Procyon lotor) are the definitive host for raccoon roundworms (Baylisascaris procyonis). Raccoon roundworm is responsible for a dangerous neurological disease known as larva migrans encephalopathy. Raccoons are omnivorous animals and rely on various food items. Dietary analyses help determine how a raccoon changes its diet in response to environmental features. Raccoons eat whatever food resource is most convenient and abundant. Parasite infections can potentially affect host eating habits in order to keep the host alive and active longer. In this study, we analyzed the diets of necropsied raccoons from ten townships of Clark and Greene Counties by examining their stomach contents. We categorized stomach contents by separating out plant material, vertebrate tissue, and invertebrate tissue. We measured the total stomach mass and the mass of plant material alone in order to compare and obtain a percentage of plant material in the raccoons’ diet. We conducted two chi-squared tests for equality of distributions. We tested the null hypotheses that raccoons from townships with high prevalence (\u3e60%) have the same vertebrate tissue and plant tissue prevalence as raccoons from townships with low roundworm prevalence

    Does Baylisascaris procyonis Impact Raccoon (Procyon lotor) Genetics?

    Get PDF
    Raccoons (Procyon lotor) are the final host for raccoon roundworms (Baylisascaris procyonis). Raccoon roundworm is the leading cause of a dangerous neurological disease, known as larva migrans encephalopathy. Phylogenetic trees illustrate co-evolutionary events between species living in a symbiotic relationship with each other. Throughout the coevolution of host and parasite, many aspects of a population affect the way the members interact with one another and with symbiotic species. In order to evaluate the relationship between host and parasite in regards to diet, we isolated DNA from intestinal wall tissue, amplified a portion of exon 2 from MHC II, and sent our samples to Ohio State University for sequencing. We calculated heterozygosities for the nine townships we surveyed. We used a chi-squared test for equality of distributions to test whether raccoons from townships with above 60% prevalence have different heterozygosity for this locus than other raccoons. These data will help us to understand the relationship between raccoons and raccoon roundworm

    Evidence for a Proton–Protein Symport Mechanism in the Anthrax Toxin Channel

    Get PDF
    The toxin produced by Bacillus anthracis, the causative agent of anthrax, is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal and edema factors (LF and EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. It has been shown that (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel is driven by a proton electrochemical potential gradient on a time scale of seconds. A paradoxical aspect of this is that although LFN (the N-terminal 263 residues of LF), on which most of our experiments were performed, has a net negative charge, it is driven through the channel by a cis-positive voltage. We have explained this by claiming that the (PA63)7 channel strongly disfavors the entry of negatively charged residues on proteins to be translocated, and hence the aspartates and glutamates on LFN enter protonated (i.e., neutralized). Therefore, the translocated species is positively charged. Upon exiting the channel, the protons that were picked up from the cis solution are released into the trans solution, thereby making this a proton–protein symporter. Here, we provide further evidence of such a mechanism by showing that if only one SO3−, which is essentially not titratable, is introduced at most positions in LFN, through the reaction of an introduced cysteine residue at those positions with 2-sulfonato-ethyl-methanethiosulfonate, voltage-driven LFN translocation is drastically inhibited. We also find that a site that disfavors the entry of negatively charged residues into the (PA63)7 channel resides at or near its Ω-clamp, the ring of seven phenylalanines near the channel's entrance

    Baylisascaris procyonis prevalence in raccoons (Procyon lotor) and its relation to landscape features

    Get PDF
    Raccoons (Procyon lotor) are the final host for raccoon roundworm (Baylisascaris procyonis). Raccoon roundworm is the leading cause of a dangerous neurological disease known as larva migrans encephalopathy. Land fragmentation occurs when natural environments are broken up by urban or agricultural landscapes. Raccoons thrive in urban environments, while raccoons in agricultural settings forage over larger areas than raccoons in urban settings do. Land fragmentation affects concentrations of B. procyonis parasites in intermediate hosts. We calculated the prevalence of raccoon roundworm in 9 townships of Greene and Clark Counties by necropsying 226 raccoon intestines. Prevalence is defined as the number of raccoons infected with roundworm divided by the total number of raccoons sampled. We determined that the prevalence of B. procyonis from Beavercreek township is significantly lower than the other townships (χ2 = 25.19, p-value = 0.0007). Prevalence of raccoon roundworm in this region is lower than many areas in the Midwestern United States, suggesting the need for further research to determine reasons for the lower prevalence in the Ohio region

    Storms and Precipitation Across the continental Divide Experiment (SPADE)

    Get PDF
    Canada First Research Excellence Fund’s Global Water Futures programme (GWF), NSERC Discovery Grants (Julie M. ThĂ©riault, Stephen J. DĂ©ry, John W. Pomeroy, and Ronald E. Stewart), the Canada Research Chairs Program (Julie M. ThĂ©riault, John W. Pomeroy), UNBC (Selina Mitchell), NSERC CGS-M, and a FRQNT fellowship (AurĂ©lie Desroches-Lapointe)Peer ReviewedThe Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields
    corecore