32 research outputs found

    Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells

    Get PDF
    Noncoding RNAs are key players in the maintenance of genomic integrity, particularly in silencing the expression of repetitive elements, some of which are retrotransposable and capable of causing genomic instability. Recent computational studies suggest an association between L1 expression and the generation of small RNAs. However, whether L1 expression has a role in the activation of small RNA expression has yet to be determined experimentally. Here we report a global analysis of small RNAs in deep sequencing from L1-active and L1-silenced breast cancer cells. We found that cells in which L1 expression was silenced exhibited greatly increased expression of a number of miRNAs and in particular, members of the let-7 family. In addition, we found differential expression of a few piRNAs that might potentially regulate gene expression. We also report the identification of several repeat RNAs against LTRs, LINEs and SINE elements. Although most of the repeat RNAs mapped to L1 elements, in general we found no significant differences in the expression levels of repeat RNAs in the presence or absence of L1 expression except for a few RNAs targeting subclasses of L1 elements. These differentially expressed small RNAs may function in human genome defence responses

    Plasticity of DNA methylation in mouse T cell activation and differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating CD4<sup>+ </sup>T helper cells are activated through interactions with antigen presenting cells and undergo differentiation into specific T helper cell subsets depending on the type of antigen encountered. In addition, the relative composition of the circulating CD4<sup>+ </sup>T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells.</p> <p>Results</p> <p>Here, we report on the highly plastic nature of DNA methylation at the genome-wide level as T cells undergo activation, differentiation and aging. Of particular note were the findings that DNA demethylation occurred rapidly following T cell activation and that all differentiated T cell populations displayed lower levels of global methylation than the non-differentiated population. In addition, T cells from older mice had a reduced level of DNA methylation, most likely explained by the increase in the memory/effector cell fraction. Although significant genome-wide changes were observed, changes in DNA methylation at individual genes were restricted to specific cell types. Changes in the expression of enzymes involved in DNA methylation and demethylation reflect in most cases the changes observed in the genome-wide DNA methylation status.</p> <p>Conclusion</p> <p>We have demonstrated that DNA methylation is dynamic and flexible in CD4+ T cells and changes rapidly both in a genome-wide and in a targeted manner during T cell activation, differentiation. These changes are accompanied by parallel changes in the enzymatic complexes that have been implicated in DNA methylation and demethylation implying that the balance between these opposing activities may play a role in the maintaining the methylation profile of a given cell type but also allow flexibility in a cell population that needs to respond rapidly to environmental signals.</p

    Changes in the Expression of miR-381 and miR-495 Are Inversely Associated with the Expression of the MDR1 Gene and Development of Multi-Drug Resistance

    No full text
    Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3'-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.The authors would like to declare that we received funding from a commercial source, i.e. Bioplatforms Australia. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials

    Vascular microarray profiling in two models of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets

    No full text
    BACKGROUND: Hypertension is a complex disease with many contributory genetic and environmental factors. We aimed to identify common targets for therapy by gene expression profiling of a resistance artery taken from animals representing two different models of hypertension. We studied gene expression and morphology of a saphenous artery branch in normotensive WKY rats, spontaneously hypertensive rats (SHR) and adrenocorticotropic hormone (ACTH)-induced hypertensive rats. RESULTS: Differential remodeling of arteries occurred in SHR and ACTH-treated rats, involving changes in both smooth muscle and endothelium. Increased expression of smooth muscle cell growth promoters and decreased expression of growth suppressors confirmed smooth muscle cell proliferation in SHR but not in ACTH. Differential gene expression between arteries from the two hypertensive models extended to the renin-angiotensin system, MAP kinase pathways, mitochondrial activity, lipid metabolism, extracellular matrix and calcium handling. In contrast, arteries from both hypertensive models exhibited significant increases in caveolin-1 expression and decreases in the regulators of G-protein signalling, Rgs2 and Rgs5. Increased protein expression of caveolin-1 and increased incidence of caveolae was found in both smooth muscle and endothelial cells of arteries from both hypertensive models. CONCLUSION: We conclude that the majority of differences in gene expression found in the saphenous artery taken from rats with two different forms of hypertension reflect distinctive morphological and physiological alterations. However, changes in common to caveolin-1 expression and G protein signalling, through attenuation of Rgs2 and Rgs5, may contribute to hypertension through augmentation of vasoconstrictor pathways and provide potential targets for common drug development

    The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves

    Get PDF
    BACKGROUND: The fungus Stagonospora nodorum is a necrotrophic pathogen of wheat. It causes disease by secreting proteinaceous effectors which interact with proteins encoded by dominant susceptibility genes in the host. The outcome of these interactions results in necrosis, allowing the fungus to thrive on dead plant material. The mechanisms of these effectors though are poorly understood. In this study, we undertake a comprehensive transcriptomics, proteomic and metabolomic approach to understand how a susceptible wheat cultivar responds to exposure to the Stagonospora nodorum effector protein SnTox3. RESULTS: Microarray and proteomic studies revealed that SnTox3 strongly induced responses consistent with those previously associated with classical host defence pathways including the expression of pathogenicity-related proteins and the induction of cell death. Collapse of the photosynthetic machinery was also apparent at the transcriptional and translational level. SnTox3-infiltrated wheat leaves also showed a strong induction of enzymes involved in primary metabolism consistent with increases in hexoses, amino acids and organic acids as determined by primary metabolite profiling. Methionine and homocysteine metabolism was strongly induced upon exposure to SnTox3. Pathogenicity in the presence of homocysteine was inhibited confirming that the compound has a role in plant defence. Consistent with the strong defence responses observed, secondary metabolite profiling revealed the induction of several compounds associated with plant defence, including the phenylpropanoids chlorogenic acid and feruloylquinic acid, and the cyanogenic glucoside dhurrin. Serotonin did not accumulate subsequent to SnTox3 infiltration.CONCLUSIONS: These data support the theory that the SnTox3 effector protein elicits a host cell death response to facilitate the pathogen’s necrotrophic infection cycle. Our data also demonstrate that the mechanism of SnTox3 appears distinct from the previously characterised Stagonospora nodorum effector SnToxA. Collectively, this comprehensive analysis has advanced our understanding of necrotrophic effector biology and highlighted the complexity of effector-triggered susceptibility.BW, LAD and PSS would like to acknowledge the financial support of the Grains Research and Development Corporation (ANU00016) and the Australian Research Council (DP0986139)

    LINE-1 retrotransposons and let-7 miRNA: Partners in the pathogenesis of cancer?

    No full text
    LINE-1 retrotransposons are insertional mutagens capable of altering the genomic landscape in many ways. Activation of the normally silent LINE-1 retrotransposon is associated with a high level of cancer-associated DNA damage and genomic instability. Studies of LINE-1 have so far focused mainly on changes in gene expression, and our knowledge of its impact on functional noncoding RNAs is in its infancy. However, current evidence suggests that a significant number of human miRNAs originate from retrotransposon sequences. Furthermore, LINE-1 is generally not expressed in normal tissues while its expression is widespread in epithelial cancers. Based on our recent studies, we demonstrate a functional link between aberrant LINE-1 expression and deregulation of let-7 miRNA expression. Since the expression of let-7 is modulated by LINE-1 activity, we discuss possible mechanisms for this effect and how the silencing of LINE-1 activation could provide new therapeutic options for cancer treatment. Based on the deep sequencing of small RNAs in parallel with gene expression profiling in breast cancer cells, we have identified potential pathways linking L1 activity to let-7 processing and maturation and ultimately to the control of stemness in human cancer cells

    NF-κB controls Il2 and Csf2 expression during T cell development and activation process

    No full text
    Aging and dysregulation of immune responds are closely associated through a complicated but unclear mechanism. Although many theories have been proposed as overall dysregulation involved in aging, mechanisms such as efficiency of DNA repairing, over-expr

    IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    No full text
    DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation

    Predicting the presence of hepatitis B virus surface antigen in Chinese patients by pathology data mining

    No full text
    Hepatitis B virus (HBV) is a pathogen of worldwide health significance, associated with liver disease. A vaccine is available, yet HBV prevalence remains a concern, particularly in developing countries. Pathology laboratories have a primary role in the d

    Identification of active site residues of the pro-metastatic endoglycosidase heparanase

    No full text
    Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS) and has been implicated in many important physiological and pathological processes, including tumor cell metastasis, angiogenesis, and leukocyte migration. We report herein the iden
    corecore