32 research outputs found
XIAP-mediated Caspase Inhibition in Hodgkin's Lymphoma–derived B Cells
The malignant Hodgkin and Reed-Sternberg cells of Hodgkin's lymphoma (HL) and HL-derived B cell lines were previously shown to be resistant to different apoptotic stimuli. We show here that cytochrome c fails to stimulate caspases-9 and -3 activation in cytosolic extracts of HL-derived B cells, which is due to high level expression of X-linked inhibitor of apoptosis (XIAP). Coimmunoprecipitation studies revealed that XIAP, apoptosis protease-activating factor–1, and caspase-3 are complexed in HL-derived B cell lysates. Even after stimulation with exogenous cytochrome c and dATP, XIAP impairs the proteolytic processing and activation of caspase-3. In cytosolic extracts, inhibition of XIAP by the second mitochondria-derived activator of caspases (Smac)/DIABLO, or immunodepletion of XIAP restores cytochrome c–triggered processing and activation of caspase-3. Smac or a Smac-derived agonistic peptide also sensitized intact HL-derived B cells for the apoptotic action of staurosporine. Finally, Hodgkin and Reed-Sternberg cells of primary tumor HL tissues also constitutively and abundantly express XIAP. The results of this paper suggest that high level XIAP expression is a hallmark of HL, which may play a crucial role in resistance to apoptosis
Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC)
<p>Abstract</p> <p>Background</p> <p>Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.</p> <p>Results</p> <p>RNA input amount and RNA extraction- and labeling methods affected signal intensity and the number of detected probes and probe sets, and caused large variation, whereas different ATP-mix dilutions and array lots did not. Leave-one-out accuracies for prediction of relapse were 63% and 73% for the two assays. Prognosticator calls ("no recurrence" or "recurrence") were consistent, independent on RNA amount, ATP-mix dilution, array lots and RNA extraction method. The calls were not robust to changes in labeling method.</p> <p>Conclusions</p> <p>In this study, we demonstrate that some analytical conditions such as RNA extraction- and labeling methods are important for the variation in assay performance whereas others are not. Thus, careful optimization that address all analytical steps and variables can improve the accuracy of prediction and facilitate the introduction of microRNA arrays in the clinic for prediction of relapse in stage I non-small cell lung cancer (NSCLC).</p
Translocation detection in lymphoma diagnosis by split-signal FISH: a standardised approach
Lymphomas originating from the lymphatic system comprise about 30 entities classified according to the World Health Organization (WHO). The histopathological diagnosis is generally considered difficult and prone to mistakes. Since non-random chromosomal translocations are specifically involved in different lymphoma entities, their detection will be increasingly important. Hence, a split-signal fluorescence in situ hybridisation (FISH) procedure would be helpful in discriminating the most difficult classifications. The Euro-FISH programme, a concerted action of nine European laboratories, has validated a robust, standardised protocol to improve the diagnostic approach on lymphoma entities. Therefore, 16 fluorescent probes and 10 WHO entities, supplemented with reactive cases, were selected. The results of the Euro-FISH programme show that all probes were correctly cytogenetically located, that the standardised protocol is robust, resulting in reliable results in approximately 90% of cases, and that the procedure could be implemented in every laboratory, bringing the relatively easy interpretation of split-signal probes within the reach of many pathology laboratories
Prognostic Model to Predict Post-Autologous Stem-Cell Transplantation Outcomes in Classical Hodgkin Lymphoma
Purpose: Our aim was to capture the biology of classical Hodgkin lymphoma (cHL) at the time of relapse and discover novel and robust biomarkers that predict outcomes after autologous stem-cell transplantation (ASCT). Materials and Methods: We performed digital gene expression profiling on a cohort of 245 formalin-fixed, paraffin-embedded tumor specimens from 174 patients with cHL, including 71 with biopsies taken at both primary diagnosis and relapse, to investigate temporal gene expression differences and associations with post-ASCT outcomes. Relapse biopsies from a training cohort of 65 patients were used to build a gene expression-based prognostic model of post-ASCT outcomes (RHL30), and two independent cohorts were used for validation. Results: Gene expression profiling revealed that 24% of patients exhibited poorly correlated expression patterns between their biopsies taken at initial diagnosis and relapse, indicating biologic divergence. Comparative analysis of the prognostic power of gene expression measurements in primary versus relapse specimens demonstrated that the biology captured at the time of relapse contained superior properties for post-ASCT outcome prediction. We developed RHL30, using relapse specimens, which identified a subset of high-risk patients with inferior post-ASCT outcomes in two independent external validation cohorts. The prognostic power of RHL30 was independent of reported clinical prognostic markers (both at initial diagnosis and at relapse) and microenvironmental components as assessed by immunohistochemistry. Conclusion: We have developed and validated a novel clinically applicable prognostic assay that at the time of first relapse identifies patients with unfavorable post-ASCT outcomes. Moving forward, it will be critical to evaluate the clinical use of RHL30 in the context of positron emission tomography-guided response assessment and the evolving cHL treatment landscape
Recommended from our members
A genome-wide association study of Hodgkin Lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21, and 10p14 (GATA3)
To identify predisposition loci for classical Hodgkin Lymphoma (cHL) we conducted a genome-wide association study of 589 cHL cases and 5,199 controls with validation in 4 independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci at 2p16.1 (rs1432295, REL; odds ratio [OR]=1.22, Pcombined=1.91×10−8), 8q24.21 (rs2019960, PVT1; OR=1.33, Pcombined=1.26×10−13) and 10p14 (rs501764, GATA3; OR=1.25, Pcombined=7.05×10−8). Furthermore, we confirmed the role of the MHC in disease etiology by revealing a strong HLA association (rs6903608; OR=1.70, Pcombined=2.84×10−50). These data provide new insight into the pathogenesis of cHL