206 research outputs found

    The Effective Δmee2\Delta m^2_{ee} in Matter

    Full text link
    In this paper we generalize the concept of an effective Δmee2\Delta m^2_{ee} for νe/νˉe\nu_e/\bar{\nu}_e disappearance experiments, which has been extensively used by the short baseline reactor experiments, to include the effects of propagation through matter for longer baseline νe/νˉe\nu_e/\bar{\nu}_e disappearance experiments. This generalization is a trivial, linear combination of the neutrino mass squared eigenvalues in matter and thus is not a simple extension of the usually vacuum expression, although, as it must, it reduces to the correct expression in the vacuum limit. We also demonstrated that the effective Δmee2\Delta m^2_{ee} in matter is very useful conceptually and numerically for understanding the form of the neutrino mass squared eigenstates in matter and hence for calculating the matter oscillation probabilities. Finally we analytically estimate the precision of this two-flavor approach and numerically verify that it is precise at the sub-percent level.Comment: 9 pages, 6 figures, 1 table, comments welcom

    Neutrino oscillation probabilities through the looking glass

    Full text link
    In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.Comment: 32 pages, 6 figure

    Rotations versus perturbative expansions for calculating neutrino oscillation probabilities in matter

    Get PDF
    We further develop a simple and compact technique for calculating the three flavor neutrino oscillation probabilities in uniform matter density. By performing additional rotations instead of implementing a perturbative expansion we significantly decrease the scale of the perturbing Hamiltonian and therefore improve the accuracy of zeroth order. We explore the relationship between implementing additional rotations and that of performing a perturbative expansion. Based on our analysis, independent of the size of the matter potential, we find that the first order perturbation expansion can be replaced by two additional rotations and a second order perturbative expansion can be replaced by one more rotation. Numerical tests have been applied and all the exceptional features of our analysis have been verified.Comment: 15 pages, 4 figures, 1 table; Matches version published in PR
    corecore