208 research outputs found

    Anthrax Toxin Uptake by Primary Immune Cells as Determined with a Lethal Factor-β-Lactamase Fusion Protein

    Get PDF
    BACKGROUND:To initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the establishment of anthrax infections. METHODOLOGY/PRINCIPAL FINDINGS:To measure the ability of anthrax toxin to target immune cells, studies were performed using a fusion of the anthrax toxin lethal factor (LF) N-terminal domain (LFn, aa 1-254) with beta-lactamase (LFnBLA). This protein reports on the ability of the anthrax toxin protective antigen (PA) to mediate LF delivery into cells. Primary immune cells prepared from mouse spleens were used in conjunction with flow cytometry to assess cleavage and resulting FRET disruption of a fluorescent beta-lactamase substrate, CCF2/AM. In spleen cell suspensions, the macrophages, dendritic cells, and B cells showed about 75% FRET disruption of CCF2/AM due to cleavage by the PA-delivered LFnBLA. LFnBLA delivery into CD4+ and CD8+ T cells was lower, with 40% FRET disruption. When the analyses were done on purified samples of individual cell types, similar results were obtained, with T cells again having lower LFnBLA delivery than macrophages, dendritic cells, and B cells. Relative expression levels of the toxin receptors CMG2 and TEM8 on these cells were determined by real-time PCR. Expression of CMG2 was about 1.5-fold higher in CD8+ cells than in CD4+ and B cells, and 2.5-fold higher than in macrophages. CONCLUSIONS/SIGNIFICANCE:Anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B cells displayed higher LFnBLA activity than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not correlated to the intracellular LFnBLA activity

    Expression of Bacillus Anthracis Protective Antigen in Transgenic Chloroplasts of Tobacco, a Non-Food/Feed Crop

    Get PDF
    The Centers for Disease Control (CDC) lists Bacillus anthracis as a category A agent and estimates the cost of an anthrax attack to exceed US$ 26 billion per 100,000 exposed individuals. Concerns regarding anthrax vaccine purity, a requirement for multiple injections, and a limited supply of the protective antigen (PA), underscore the urgent need for an improved vaccine. Therefore, the 83 kDa immunogenic Bacillus anthracis protective antigen was expressed in transgenic tobacco chloroplasts. The PA gene (pag) was cloned into a chloroplast vector along with the psbA regulatory signals to enhance translation. Chloroplast integration of the transgenes was confirmed by PCR and Southern blot analyses. Crude plant extracts contained up to 2.5 mg full length PA/g of fresh leaf tissue and this showed exceptional stability for several months in stored leaves or crude extracts. Maximum levels of expression were observed in mature leaves under continuous illumination. Co-expression of the ORF2 chaperonin from Bacillus thuringiensis did not increase PA accumulation or induce folding into cuboidal crystals in transgenic chloroplasts. Trypsin, chymotrypsin and furin proteolytic cleavage sites present in PA were protected in transgenic chloroplasts because only full length PA 83 was observed without any degradation products. Both CHAPS and SDS detergents extracted PA with equal efficiency and PA was observed in the soluble fraction. Chloroplast-derived PA was functionally active in lysing mouse macrophages when combined with lethal factor (LF). Crude leaf extracts contained up to 25 μg functional PA/ml. With an average yield of 172 mg of PA per plant using an experimental transgenic cultivar grown in a greenhouse, 400 million doses of vaccine (free of contaminants) could be produced per acre, a yield that could be further enhanced 18-fold using a commercial cultivar in the field

    Effect of over expressing protective antigen on global gene transcription in Bacillus anthracis BH500

    Get PDF
    Protective antigen (PA) of Bacillus anthracis is being considered as a vaccine candidate against anthrax and its production has been explored in several heterologous host systems. Since the expression approaches tested, introduced adverse issues such as inclusion body formation and endotoxin contamination, the production from B. anthracis is presently considered as a preferred method. In this presentation we will report on the effect of protective antigen expression on the metabolism of the producing train B. anthracis, BH500, by comparing it with a control strain carrying an empty plasmid. The two strains were grown in a bioreactor and RNA-seq analysis of the producing and non-producing strain was performed. Several differences were observed, especially significant were the following: the strain expressing rPA showed increased transcription of sigL, the gene encoding RNA polymerase σ54, sigB, the general stress transcription factor gene and its regulators rsbW and rsbV, as well as the global regulatory repressor ctsR. At the same time there were also decreased expression of intracellular heat stress related genes such as groL, groES, hslO, dnaJ, and dnaK and increased expression of extracellular chaperons csaA and prsA2. Additionally, major central metabolism genes belonging to TCA, glycolysis, PPP, and amino acids biosynthesis were up-regulated in the PA-producing strain which was associated with decreased specific growth rates. The information and the observation acquired from this study will be presented together with possible approaches to create a better producing strain

    Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis

    Get PDF
    The anthrax toxin is composed of three independent polypeptide chains. Successful intoxication only occurs when heptamerization of the receptor-binding polypeptide, the protective antigen (PA), allows binding of the two enzymatic subunits before endocytosis. We show that this tailored behavior is caused by two counteracting posttranslational modifications in the cytoplasmic tail of PA receptors. The receptor is palmitoylated, and this unexpectedly prevents its association with lipid rafts and, thus, its premature ubiquitination. This second modification, which is mediated by the E3 ubiquitin ligase Cbl, only occurs in rafts and is required for rapid endocytosis of the receptor. As a consequence, cells expressing palmitoylation-defective mutant receptors are less sensitive to anthrax toxin because of a lower number of surface receptors as well as premature internalization of PA without a requirement for heptamerization

    Characterization of a Chinese Hamster Ovary Cell Mutant Having a Mutation in Elongation Factor-2

    Get PDF
    Retroviral insertional mutagenesis provides an effective forward genetic method for identifying genes involved in essential cellular pathways. A Chinese hamster ovary cell line mutant resistant to several bacterial ADP-ribosylating was obtained by this approach. The toxins used catalyze ADP-ribosylation of eukaryotic elongation factor 2 (eEF-2), block protein synthesis, and cause cell death. Strikingly, in the CHO PR328 mutant cells, the eEF-2 substrate of these ADP-ribosylating toxins was found to be modified, but the cells remained viable. A systematic study of these cells revealed the presence of a structural mutation in one allele of the eEF-2 gene. This mutation, Gly717Arg, is close to His715, the residue that is modified to become diphthamide. This Arg substitution prevents diphthamide biosynthesis at His715, rendering the mutated eEF-2 non-responsive to ADP-ribosylating toxins, while having no apparent effect on protein synthesis. Thus, CHO PR328 cells are heterozygous, having wild type and mutant eEF-2 alleles, with the latter allowing the cells to survive even in the presence of ADP-ribosylating toxins. Here, we report the comprehensive characterization of these cells

    An antibody-based microarray assay for small RNA detection

    Get PDF
    Detection of RNAs on microarrays is rapidly becoming a standard approach for molecular biologists. However, current methods frequently discriminate against structured and/or small RNA species. Here we present an approach that bypasses these problems. Unmodified RNA is hybridized directly to DNA microarrays and detected with the high-affinity, nucleotide sequence-independent, DNA/RNA hybrid-specific mouse monoclonal antibody S9.6. Subsequent reactions with a fluorescently-labeled anti-mouse IgG antibody or biotin-labeled anti-mouse IgG together with fluorescently labeled streptavidin produces a signal that can be measured in a standard microarray scanner. The antibody-based method was able to detect low abundance small RNAs of Escherichia coli much more efficiently than the commonly-used cDNA-based method. A specific small RNA was detected in amounts of 0.25 fmol (i.e. concentration of 10 pM in a 25 µl reaction). The method is an efficient, robust and inexpensive technique that allows quantitative analysis of gene expression and does not discriminate against short or structured RNAs

    Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway

    Get PDF
    The protective antigen (PA) of anthrax toxin binds to a cell surface receptor, undergoes heptamerization, and binds the enzymatic subunits, the lethal factor (LF) and the edema factor (EF). The resulting complex is then endocytosed. Via mechanisms that depend on the vacuolar ATPase and require membrane insertion of PA, LF and EF are ultimately delivered to the cytoplasm where their targets reside. Here, we show that membrane insertion of PA already occurs in early endosomes, possibly only in the multivesicular regions, but that subsequent delivery of LF to the cytoplasm occurs preferentially later in the endocytic pathway and relies on the dynamics of internal vesicles of multivesicular late endosomes

    Anthrax Lethal Factor Cleavage of Nlrp1 Is Required for Activation of the Inflammasome

    Get PDF
    NOD-like receptor (NLR) proteins (Nlrps) are cytosolic sensors responsible for detection of pathogen and danger-associated molecular patterns through unknown mechanisms. Their activation in response to a wide range of intracellular danger signals leads to formation of the inflammasome, caspase-1 activation, rapid programmed cell death (pyroptosis) and maturation of IL-1β and IL-18. Anthrax lethal toxin (LT) induces the caspase-1-dependent pyroptosis of mouse and rat macrophages isolated from certain inbred rodent strains through activation of the NOD-like receptor (NLR) Nlrp1 inflammasome. Here we show that LT cleaves rat Nlrp1 and this cleavage is required for toxin-induced inflammasome activation, IL-1 β release, and macrophage pyroptosis. These results identify both a previously unrecognized mechanism of activation of an NLR and a new, physiologically relevant protein substrate of LT

    Decoding Neural Circuits that Control Compulsive Sucrose Seeking

    Get PDF
    SummaryThe lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces “compulsive” sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder
    corecore