777 research outputs found

    Allogeneic Hematopoietic Cell Transplantation in the Treatment of Chronic Lymphocytic Leukemia: Why and When?

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common hematologic malignancy in adults with an incidence rate of 4.2 per 100,000 per year. CLL frequently takes an indolent course, with some patients not requiring treatment for years, yet is incurable by currently available chemo- and immuno-therapeutic modalities. Despite high initial response rates, particularly to purine analogues, patients invariably relapse and subsequently develop resistance to therapy. The traditional “watchful waiting” approach to CLL is being challenged by data showing that treatments used early in the disease course impact long-term overall and progression-free survivals . The only curative treatment for CLL currently, is allogeneic hematopoeietic cell transplantation (alloHCT). In contrast to autologous transplant, myeloablative alloHCT for CLL patients generates durable remissions with promising survival plateaus; however, significant transplant related mortality (TRM) is also observed (25-50%) . At present the fact remains that for poor-risk CLL, alloHCT is the only treatment with the potential of providing long-term disease control. Future combinations with emerging low-toxicity therapies may further enhance the curative potential of allogeniec hematopoietic cell transplant. New drugs can also potentially enable refractory patients to attain response as a bridge to more effective stem cell transplantation

    Preclinical Results of Camptothecin-Polymer Conjugate (IT-101) in Multiple Human Lymphoma Xenograft Models

    Get PDF
    Purpose: Camptothecin (CPT) has potent broad-spectrum antitumor activity by inhibiting type I DNA topoisomerase (DNA topo I). It has not been used clinically because it is water-insoluble and highly toxic. As a result, irinotecan (CPT-11), a water-soluble analogue of CPT, has been developed and used as salvage chemotherapy in patients with relapsed/refractory lymphoma, but with only modest activity. Recently, we have developed a cyclodextrin-based polymer conjugate of 20-(S)-CPT (IT-101). In this study, we evaluated the preclinical antilymphoma efficacy of IT-101 as compared with CPT-11. Experimental Design: We determined an in vitro cytotoxicity of IT-101, CPT-11, and their metabolites against multiple human lymphoma cell lines. In human lymphoma xenografts, the pharmacokinetics, inhibitions of tumor DNA topo I catalytic activity, and antilymphoma activities of these compounds were evaluated. Results: IT-101 and CPT had very high in vitro cytotoxicity against all lymphoma cell lines tested. As compared with CPT-11 and SN-38, IT-101 and CPT had longer release kinetics and significantly inhibit higher tumor DNA topo I catalytic activities. Furthermore, IT-101 showed significantly prolonged the survival of animals bearing s.c. and disseminated human xenografts when compared with CPT-11 at its maximum tolerated dose in mice. Conclusions: The promising present results provide the basis for a phase I clinical trial in patients with relapsed/refractory lymphoma

    Hot Gaseous Coronae around Spiral Galaxies: Probing the Illustris Simulation

    Get PDF
    The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae were detected around spirals with massive stellar bodies (2×1011 M\gtrsim2\times10^{11} \ \rm{M_{\odot}}). To explore the hot coronae around lower mass spiral galaxies, we utilized Chandra X-ray observations of a sample of eight normal spiral galaxies with stellar masses of (0.72.0)×1011 M(0.7-2.0)\times10^{11} \ \rm{M_{\odot}}. Although statistically significant diffuse X-ray emission is not detected beyond the optical radii (20\sim20 kpc) of the galaxies, we derive 3σ3\sigma limits on the characteristics of the coronae. These limits, complemented with previous detections of NGC 1961 and NGC 6753, are used to probe the Illustris Simulation. The observed 3σ3\sigma upper limits on the X-ray luminosities and gas masses exceed or are at the upper end of the model predictions. For NGC 1961 and NGC 6753 the observed gas temperatures, metal abundances, and electron density profiles broadly agree with those predicted by Illustris. These results hint that the physics modules of Illustris are broadly consistent with the observed properties of hot coronae around spiral galaxies. However, a shortcoming of Illustris is that massive black holes, mostly residing in giant ellipticals, give rise to powerful radio-mode AGN feedback, which results in under luminous coronae for ellipticals.Comment: 12 pages, 6 figures, accepted for publication in Ap
    corecore