1,804 research outputs found

    Incorporating Poly(3-hexyl thiophene) into Orthogonally Aligned Cylindrical Nanopores of Titania for Optoelectronics

    Get PDF
    The incorporation of hole conducting polymer poly(3-hexyl thiophene) (P3HT) into the 8-9 nm cylindrical nanopores of titania is investigated using films with a unique orthogonally oriented hexagonal close packed mesostructure. The films are synthesized using evaporation induced self-assembly (EISA) with Pluronic triblock copolymer F127 as the structure directing agent. The orthogonally oriented cylindrical nanopore structure was chosen over a cubic structure because confinement in uniform cylindrical channels is hypothesized to enhance hole conductivity of P3HT by inducing local polymer chain ordering. Orthogonal orientation of the cylindrical nanopores is achieved by modifying the substrate (FTO-coated glass slides) with crosslinked F127. After thermal treatment to remove organic templates from the films, P3HT is infiltrated into the nanopores by spin coating a 1 wt% P3HT solution in chlorobenzene onto the titania films followed by thermal annealing under vacuum at 200 °C. The results show that infiltration is essentially complete after 30 minutes of annealing, with little or no further infiltration thereafter. A final infiltration depth of ~14 nm is measured for P3HT into the nanopores of titania using neutron reflectometry measurements. Photoluminescence measurements demonstrate that charge transfer at the P3HT-TiO2 interface improves as the P3HT is infiltrated into the pores, suggesting that an active organic-inorganic heterojuction is formed in the materials

    On-Farm Integrated High-Solids Processing System for Biomass

    Get PDF
    A method for on-farm processing a biomass feedstock into a useful industrial chemicals includes the steps of (a) delignifying the biomass feedstock to produce a delignified biomass, (b) subjecting the deliguified biomass to cellulase production, (c) subjecting the deliguified biomass with attached cellulase to simultaneous cellulolytic and solventogenic reactions to produce useful industrial chemicals (d) collecting and separating the useful industrial chemical from the fermentation broth and (e) collecting the fermentation residues

    Cytotoxic Activity of Triazole-Containing Alkyl β-D-Glucopyranosides on a Human T-Cell Leukemia Cell Line

    Get PDF
    Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals, detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated

    Cytotoxic Activity of Triazole-Containing Alkyl ß-D-Glucopyranosides on a Human T-Cell Leukemia Cell Line

    Get PDF
    BACKGROUND: Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals, detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated. RESULTS: We synthesized a series of triazole-linked (fluoro)alkyl β-glucopyranosides using the copper-catalyzed azide-alkyne reaction, one of many popular click reactions that enable efficient preparation of structurally diverse compounds, and investigate the toxicity of this novel class of surfactant in the Jurkat cell line. Similar to other carbohydrate surfactants, the cytotoxicity of the triazole-linked alkyl β-glucopyranosides was low, with IC50 values decreasing from 1198 to 24 μM as the hydrophobic tail length increased from 8 to 16 carbons. The two alkyl β-glucopyranosides with the longest hydrophobic tails caused apoptosis by mechanisms involving mitochondrial depolarization and caspase-3 activation. CONCLUSIONS: Triazole-linked, glucose-based surfactants 4a-g and other carbohydrate surfactants may cause apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade; however, additional studies are needed to fully explore the molecular mechanisms of their toxicity. Graphical AbstractTriazole-linked, glucose-based surfactants cause apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade

    Strategy for Conjugating Oligopeptides to Mesoporous Silica Nanoparticles Using Diazirine-Based Heterobifunctional Linkers

    Get PDF
    Successful strategies for the attachment of oligopeptides to mesoporous silica with pores large enough to load biomolecules should utilize the high surface area of pores to provide an accessible, protective environment. A two-step oligopeptide functionalization strategy is examined here using diazirine-based heterobifunctional linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm and surface area of ~730 m2/g were synthesized and amine-functionalized. Tetrapeptides Gly-Gly-Gly-Gly (GGGG) and Arg-Ser-Ser-Val (RSSV), and a peptide comprised of four copies of RSSV (4RSSV), were covalently attached via their N-terminus to the amine groups on the particle surface by a heterobifunctional linker, sulfo-succinimidyl 6-(4,4′-azipentanamido)hexanoate (sulfo-NHS-LC-diazirine, or SNLD). SNLD consists of an amine-reactive NHS ester group and UV-activable diazirine group, providing precise control over the sequence of attachment steps. Attachment efficiency of RSSV was measured using fluorescein isothiocyanate (FITC)-tagged RSSV (RSSV-FITC). TGA analysis shows similar efficiency (0.29, 0.31 and 0.26 mol peptide/mol amine, respectively) for 4G, RSSV and 4RSSV, suggesting a generalizable method of peptide conjugation. The technique developed here for the conjugation of peptides to MSNPs provides for their attachment in pores and can be translated to selective peptide-based separation and concentration of therapeutics from aqueous process and waste streams

    Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells

    Get PDF
    The cytokine IL-15 is required for natural killer (NK) cell homeostasis; however, the intrinsic mechanism governing this requirement remains unexplored. Here we identify the absolute requirement for myeloid cell leukaemia sequence-1 (Mcl1) in the sustained survival of NK cells in vivo. Mcl1 is highly expressed in NK cells and regulated by IL-15 in a dose-dependent manner via STAT5 phosphorylation and subsequent binding to the 3'-UTR of Mcl1. Specific deletion of Mcl1 in NK cells results in the absolute loss of NK cells from all tissues owing to a failure to antagonize pro-apoptotic proteins in the outer mitochondrial membrane. This NK lymphopenia results in mice succumbing to multiorgan melanoma metastases, being permissive to allogeneic transplantation and being resistant to toxic shock following polymicrobial sepsis challenge. These results clearly demonstrate a non-redundant pathway linking IL-15 to Mcl1 in the maintenance of NK cells and innate immune responses in vivo

    TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury
    corecore