3 research outputs found

    Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry

    No full text
    A study of the two-dimensional crystallization of rhodizonic acid on the crystalline surfaces of gold and copper is presented. Rhodizonic acid, a cyclic oxocarbon related to the ferroelectric croconic acid and the antiferroelectric squaric acid, has not been synthesized in bulk crystalline form yet. Capitalizing on surface-assisted molecular self-assembly, a two-dimensional analogue to the well-known solution-based coordination chemistry, two-dimensional structures of rhodizonic acid were stabilized under ultrahigh vacuum on Au(111) and Cu(111) surfaces. Scanning tunneling microscopy, coupled with first-principles calculations, reveals that on the less reactive Au surface, extended two-dimensional islands of rhodizonic acid are formed, in which the molecules interact via hydrogen bonding and dispersion forces. However, the rhodizonic acid deprotonates into rhodizonate on Cu substrates upon annealing, forming magic clusters and metal–organic coordination networks with substrate adatoms. The networks show a 2:1 distribution of rhodizonate coordinated with 3 and 6 Cu atoms, respectively. The stabilization of crystalline structures of rhodizonic acid, structures not reported before, and their transition into metal–organic networks demonstrate the potential of surface chemistry to synthesize new and potential useful organic nanomaterials

    Enhancement of Local Piezoresponse in Polymer Ferroelectrics <i>via</i> Nanoscale Control of Microstructure

    No full text
    Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of β-phase extended chain crystals <i>via</i> sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believe that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films

    Multimodal Nonlinear Optical Imaging of MoS<sub>2</sub> and MoS<sub>2</sub>‑Based van der Waals Heterostructures

    No full text
    van der Waals layered structures, notably the transitional metal dichalcogenides (TMDs) and TMD-based heterostructures, have recently attracted immense interest due to their unique physical properties and potential applications in electronics, optoelectronics, and energy harvesting. Despite the recent progress, it is still a challenge to perform comprehensive characterizations of critical properties of these layered structures, including crystal structures, chemical dynamics, and interlayer coupling, using a single characterization platform. In this study, we successfully developed a multimodal nonlinear optical imaging method to characterize these critical properties of molybdenum disulfide (MoS<sub>2</sub>) and MoS<sub>2</sub>-based heterostructures. Our results demonstrate that MoS<sub>2</sub> layers exhibit strong four-wave mixing (FWM), sum-frequency generation (SFG), and second-harmonic generation (SHG) nonlinear optical characteristics. We believe this is the first observation of FWM and SFG from TMD layers. All three kinds of optical nonlinearities are sensitive to layer numbers, crystal orientation, and interlayer coupling. The combined and simultaneous SHG/SFG-FWM imaging not only is capable of rapid evaluation of crystal quality and precise determination of odd–even layers but also provides <i>in situ</i> monitoring of the chemical dynamics of thermal oxidation in MoS<sub>2</sub> and interlayer coupling in MoS<sub>2</sub>–graphene heterostructures. This method has the advantages of versatility, high fidelity, easy operation, and fast imaging, enabling comprehensive characterization of van der Waals layered structures for fundamental research and practical applications
    corecore