106 research outputs found

    Mother–Infant Communication: Carrying Understanding to a New Level

    Get PDF
    SummaryA recent study has found that carrying — not just holding — by human mothers has a specific calming effect on crying infants, inducing a coordinated physiological response that includes a reduction in heart rate. A similar response in mice has opened the door to elucidating the underlying neural mechanisms

    Gene Expression Changes in the Septum: Possible Implications for MicroRNAs in Sculpting the Maternal Brain

    Get PDF
    The transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period

    Altered Dopamine Signaling in Naturally Occurring Maternal Neglect

    Get PDF
    Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking.The current study characterizes a population of mice (MaD1) which naturally exhibit maternal neglect (little or no care of offspring) at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI), ventral tegmental area (VTA), and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production) was significantly elevated in ZI and higher in VTA (although not significantly) in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams.These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally occurring neglect and that MaD1 mice are a useful model for understanding the basis of naturally occurring neglect

    Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice

    Get PDF
    BACKGROUND: During lactation, the CNS is less responsive to the anxiogenic neuropeptide, corticotropin-releasing factor (CRF). Further, central injections of CRF inhibit maternal aggression and some maternal behaviors, suggesting decreased CRF neurotransmission during lactation supports maternal behaviors. In this study, we examined the maternal profile of mice missing the CRF receptor 1 (CRFR1). Offspring of knockout (CRFR1-/-) mice were heterozygote to offset possible deleterious effects of low maternal glucocorticoids on pup survival and all mice contained a mixed 50:50 inbred/outbred background to improve overall maternal profiles and fecundity. RESULTS: Relative to littermate wild-type (WT) controls, CRFR1-/- mice exhibited significant deficits in total time nursing, including high arched-back, on each test day. Consistent with decreased nursing, pups of CRFR1-deficient dams weighed significantly less than WT offspring. Licking and grooming of pups was significantly higher in WT mice on postpartum Day 2 and when both test days were averaged, but not on Day 3. Time off nest was higher for CRFR1-/- mice on Day 2, but not on Day 3 or when test days were averaged. Licking and grooming of pups did not differ on Day 2 when this measure was examined as a proportion of time on nest. CRFR1-/- mice showed significantly higher nest building on Day 3 and when tests were averaged. Mean pup number was almost identical between groups and no pup mortality occurred. Maternal aggression was consistently lower in CRFR1-/- mice and in some measures these differences approached, but did not reach significance. Because of high variance, general aggression results are viewed as preliminary. In terms of sites of attacks on intruders, CRFR1-/- mice exhibited significantly fewer attacks to the belly of the intruder on Day 5 and when tests were averaged. Performance on the elevated plus maze was similar between genotypes. Egr-1 expression differences in medial preoptic nucleus and c-Fos expression differences in bed nucleus of stria terminalis between genotype suggest possible sites where loss of gene alters behavioral output. CONCLUSION: Taken together, the results suggest that the presence of an intact CRFR1 receptor supports some aspects of nurturing behavior

    Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas

    Get PDF
    Abstract Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans

    GABAA receptor signaling in the lateral septum regulates maternal aggression in mice.

    No full text

    Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification.

    Get PDF
    Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS
    • …
    corecore