4 research outputs found

    Enhanced Solvation of Peptides Attached to “Solid-Phase” Resins: Straightforward Syntheses of the Elastin Sequence Pro-Gly-Val-Gly-Val-Pro-Gly-Val-Gly-Val

    No full text
    The solubility-enhancing power of covalent attachment to solvent-swollen cross-linked resin supports was illustrated by syntheses of the highly aggregating elastin-derived 10-residue peptide sequence Pro-Gly-Val-Gly-Val-Pro-Gly-Val-Gly-Val using standard protocols for both Boc and Fmoc chemistry SPPS

    Native Chemical Ligation at Asx-Cys, Glx-Cys: Chemical Synthesis and High-Resolution X‑ray Structure of ShK Toxin by Racemic Protein Crystallography

    No full text
    We have re-examined the utility of native chemical ligation at -Gln/Glu-Cys- [Glx-Cys] and -Asn/Asp-Cys- [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at -Gln-Cys- and Asn-Cys- sites without side reactions. After optimization, ligation at a -Glu-Cys- site could also be used as a ligation site, with minimal levels of byproduct formation. However, -Asp-Cys- is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at -Gln-Cys- enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The d-ShK protein molecule was ∼50,000-fold less active in blocking the Kv1.3 channel than the l-ShK protein molecule. Racemic protein crystallography was used to obtain high-resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule

    Fully Convergent Chemical Synthesis of Ester Insulin: Determination of the High Resolution X‑ray Structure by Racemic Protein Crystallography

    No full text
    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described “ester insulin”a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bondas a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the d-protein and l-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp<sup>B10</sup>, Lys<sup>B28</sup>, Pro<sup>B29</sup>]­ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {d-DKP ester insulin + l-DKP ester insulin}, whereas crystals were not obtained from the l-ester insulin alone even after extensive trials. Both the d-protein and l-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. l-DKP ester insulin bound weakly to the insulin receptor, while synthetic l-DKP insulin derived from the l-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The d- and l-DKP ester insulins and d-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic l-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed

    A Potent d‑Protein Antagonist of VEGF‑A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating <i>in Vivo</i>

    No full text
    Polypeptides composed entirely of d-amino acids and the achiral amino acid glycine (d-proteins) inherently have <i>in vivo</i> properties that are proposed to be near-optimal for a large molecule therapeutic agent. Specifically, d-proteins are resistant to degradation by proteases and are anticipated to be nonimmunogenic. Furthermore, d-proteins are manufactured chemically and can be engineered to have other desirable properties, such as improved stability, affinity, and pharmacokinetics. Thus, a well-designed d-protein therapeutic would likely have significant advantages over l-protein drugs. Toward the goal of developing d-protein therapeutics, we previously generated RFX001.D, a d-protein antagonist of natural vascular endothelial growth factor A (VEGF-A) that inhibited binding to its receptor. However, RFX001.D is unstable at physiological temperatures (<i>T</i><sub>m</sub> = 33 °C). Here, we describe RFX037.D, a variant of RFX001.D with extreme thermal stability (<i>T</i><sub>m</sub> > 95 °C), high affinity for VEGF-A (<i>K</i><sub>d</sub> = 6 nM), and improved receptor blocking. Comparison of the two enantiomeric forms of RFX037 revealed that the d-protein is more stable in mouse, monkey, and human plasma and has a longer half-life <i>in vivo</i> in mice. Significantly, RFX037.D was nonimmunogenic in mice, whereas the l-enantiomer generated a strong immune response. These results confirm the potential utility of synthetic d-proteins as alternatives to therapeutic antibodies
    corecore