356 research outputs found

    Ferrocement reservoirs: how appropriate?

    Get PDF
    Ferrocement reservoirs: how appropriate

    Cardiovascular magnetic resonance in endomyocardial fibrosis

    Get PDF
    Endomyocardial fibrosis (EMF) is an idiopathic disorder of the tropical and subtropical regions of the world, considered endemic in tropical and subtropical Africa and is characterised by development of restrictive cardiomyopathy. Although accurate epidemiological data are lacking, EMF is estimated to be the most common form of restrictive cardiomyopathy globally. We report on a young patient presenting with a stroke diagnosed with EMF and review the role of cardiovascular magnetic resonance in evaluation of EMF

    Unphysical Operators in Partially Quenched QCD

    Full text link
    We point out that the chiral Lagrangian describing pseudo-Goldstone bosons in partially quenched QCD has one more four-derivative operator than that for unquenched QCD with three flavors. The new operator can be chosen to vanish in the unquenched sector of the partially quenched theory. Its contributions begin at next-to-leading order in the chiral expansion. At this order it contributes only to unphysical scattering processes, and we work out some examples. Its contributions to pseudo-Goldstone properties begin at next-to-next-to-leading order, and we determine their form. We also determine all the zero and two derivative operators in the O(p6)O(p^6) partially quenched chiral Lagrangian, finding three more than in unquenched QCD, and use these to give the general form of the analytic next-to-next-to-leading order contributions to the pseudo-Goldstone mass and decay constant. We discuss the general implications of such additional operators for the utility of partially quenched simulationsComment: 13 pages, 11 figures Version 2: Additional footnote and parenthesis in section

    Crossover and scaling in a two-dimensional field-tuned superconductor

    Full text link
    Using an analysis similar to that of Imry and Wortis, it is shown that the apparent first order superconductor to metal transition, which has been claimed to exist at low values of the magnetic field in a two-dimensional field-tuned system at zero temperature,can be consistentlyinterpreted as a sharp crossover from a strong superconductor to an inhomogeneous state, which is a weak superconductor. The true zero-temperature superconductor to insulator transition within the inhomogenous state is conjectured to be that of randomly diluted XY model. An explaination of the observed finite temperature approximate scaling of resistivity close to the critical point is speculated within this model.Comment: 5 pages, 2 figures, corrected and modified according to referee Report

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Super-conservative interpretation of muon g-2 results applied to supersymmetry

    Get PDF
    The recent developments in theory and experiment related to the anomalous magnetic moment of the muon are applied to supersymmetry. We follow a very cautious course, demanding that the supersymmetric contributions fit within five standard deviations of the difference between experiment and the standard model prediction. Arbitrarily small supersymmetric contributions are then allowed, so no upper bounds on superpartner masses result. Nevertheless, non-trivial exclusions are found. We characterize the substantial region of parameter space ruled out by this analysis that has not been probed by any previous experiment. We also discuss some implications of the results for forthcoming collider experiments.Comment: 10 pages, latex, 3 fig

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
    corecore