131 research outputs found

    Regularized braneworlds of arbitrary codimension

    Full text link
    We consider a thick p-brane embedded in an n-dimensional spacetime possessing radial symmetry in the directions orthogonal to the brane. We first consider a static brane, and find a general fine tuning relationship between the brane and bulk parameters required for the brane to be flat. We then consider the cosmology of a time dependent brane in a static bulk, and find the Friedmann equation for the brane scale factor a(t). The singularities that would ordinarily arise when considering arbitrary codimensions are avoided by regularizing the brane, giving it a finite profile in the transverse dimensions. However, since we consider the brane to be a strictly local defect, we find that the transverse dimensions must have infinite volume, and hence gravity cannot be localized on the brane without resorting to some infra-red cutoff.Comment: 21 page

    Cluster Probes of Dark Energy Clustering

    Full text link
    Cluster abundances are oddly insensitive to canonical early dark energy. Early dark energy with sound speed equal to the speed of light cannot be distinguished from a quintessence model with the equivalent expansion history for z<2z<2 but negligible early dark energy density, despite the different early growth rate. However, cold early dark energy, with a sound speed much smaller than the speed of light, can give a detectable signature. Combining cluster abundances with cosmic microwave background power spectra can determine the early dark energy fraction to 0.3 % and distinguish a true sound speed of 0.1 from 1 at 99 % confidence. We project constraints on early dark energy from the Euclid cluster survey, as well as the Dark Energy Survey, using both current and projected Planck CMB data, and assess the impact of cluster mass systematics. We also quantify the importance of dark energy perturbations, and the role of sound speed during a crossing of w=−1w=-1

    Galileons on Trial

    Full text link
    Galileon gravity is a robust theoretical alternative to general relativity with a cosmological constant for explaining cosmic acceleration, with interesting properties such as having second order field equations and a shift symmetry. While either its predictions for the cosmic expansion or growth histories can approach standard \Lambda CDM, we demonstrate the incompatibility of both doing so simultaneously. Already current observational constraints can severely disfavor an entire class of Galileon gravity models that do not couple directly to matter, ruling them out as an alternative to \Lambda CDM.Comment: v2 matches JCAP versio

    Parameterizing scalar-tensor theories for cosmological probes

    Full text link
    We study the evolution of density perturbations for a class of f(R)f(R) models which closely mimic Λ\LambdaCDM background cosmology. Using the quasi-static approximation, and the fact that these models are equivalent to scalar-tensor gravity, we write the modified Friedmann and cosmological perturbation equations in terms of the mass MM of the scalar field. Using the perturbation equations, we then derive an analytic expression for the growth parameter γ\gamma in terms of MM, and use our result to reconstruct the linear matter power spectrum. We find that the power spectrum at z∼0z \sim 0 is characterized by a tilt relative to its General Relativistic form, with increased power on small scales. We discuss how one has to modify the standard, constant γ\gamma prescription in order to study structure formation for this class of models. Since γ\gamma is now scale and time dependent, both the amplitude and transfer function associated with the linear matter power spectrum will be modified. We suggest a simple parameterization for the mass of the scalar field, which allows us to calculate the matter power spectrum for a broad class of f(R)f(R) models

    Modified Gravity: the CMB, Weak Lensing and General Parameterisations

    Full text link
    We examine general physical parameterisations for viable gravitational models in the f(R)f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a)M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k)\mu(a,k) and the ratio of the Newtonian potentials η(a,k)\eta(a,k). However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of μ(a,k)\mu(a,k) and η(a,k)\eta(a,k) in the literature does not accurately represent f(R)f(R) behaviour. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k)\mu(a,k) and η(a,k)\eta(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum--where the signatures are evident--thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M0=9.4×10−30eVM_{0} = 9.4 \times 10^{-30}{\rm eV} at the ∼20\sim 20 % level. However, the decay rate of the scalaron mass, with fiducial value ν=1.5\nu = 1.5, can be constrained to ∼3\sim 3% uncertainty

    Curing singularities in cosmological evolution of F(R) gravity

    Full text link
    We study F(R)F(R) modified gravity models which are capable of driving the accelerating epoch of the Universe at the present time whilst not destroying the standard Big Bang and inflationary cosmology. Recent studies have shown that a weak curvature singularity with ∣R∣→∞|R|\to\infty can arise generically in viable F(R)F(R) models of present dark energy (DE) signaling an internal incompleteness of these models. In this work we study how this problem is cured by adding a quadratic correction with a sufficiently small coefficient to the F(R)F(R) function at large curvatures. At the same time, this correction eliminates two more serious problems of previously constructed viable F(R)F(R) DE models: unboundedness of the mass of a scalar particle (scalaron) arising in F(R)F(R) gravity and the scalaron overabundance problem. Such carefully constructed models can also yield both an early time inflationary epoch and a late time de Sitter phase with vastly different values of RR. The reheating epoch in these combined models of primordial and present dark energy is completely different from that of the old R+R2/6M2R + R^{2}/6M^{2} inflationary model, mainly due to the fact that values of the effective gravitational constant at low and intermediate curvatures are different for positive and negative RR. This changes the number of e-folds during the observable part of inflation that results in a different value of the primordial power spectrum index.Comment: Discussion expanded, references added, results unchanged, accepted for publication in JCAP. A minor typo in Eq. (2.14) has been correcte
    • …
    corecore