24,944 research outputs found

    Properties of length-apodized phase-shifted lpgs operating at the phase matching turning point

    No full text
    The characteristics of length-apodized phase-shifted fiber optic long period gratings with full and partial nanostructured coatings have been explored theoretically and experimentally. The twin rejection bands that are characteristic of length-apodized phase-shifted long period gratings are studied for a long period grating (LPG) operating at the phase matching turning point. When one half of the length of the LPG is coated, complex bandgap like structure appears within the transmission spectrum, which may be of benefit to spectral filter design and for sensing applications

    Cure monitoring of a UV cured epoxy resin using a long period grating Mach- Zehnder interferometer

    Get PDF
    A cascaded long period grating Mach-Zehnder interferometer is used to monitor the change in refractive index of a UV cured epoxy resin over a cure cycle. Fourier techniques are used to calculate the phase shift and frequency spectral amplitude of the associated fringe pattern during the cure. The results are compared with the refractive index change during cure calculated using a Fresnel reflection based technique

    Physics of Nonthermal Radio Sources

    Get PDF
    On December 3 and 4, 1962, the Goddard Institute for Space Studies, an office of the National Aeronautics and Space Administration, was host to an international group of astronomers and physicists who met to discuss the physics of nonthermal radio sources. This was the third in a continuing series of interdisciplinary meetings held at the Institute on topics which have a special bearing on the main lines of inquiry in the space program. The conference was organized by G. R. Burbidge of the University of California at San Diego and by L. Woltjer, then of the University of Leiden but temporarily at the Massachusetts Institute of Technology, and now of Columbia University

    Convex optimization for the planted k-disjoint-clique problem

    Get PDF
    We consider the k-disjoint-clique problem. The input is an undirected graph G in which the nodes represent data items, and edges indicate a similarity between the corresponding items. The problem is to find within the graph k disjoint cliques that cover the maximum number of nodes of G. This problem may be understood as a general way to pose the classical `clustering' problem. In clustering, one is given data items and a distance function, and one wishes to partition the data into disjoint clusters of data items, such that the items in each cluster are close to each other. Our formulation additionally allows `noise' nodes to be present in the input data that are not part of any of the cliques. The k-disjoint-clique problem is NP-hard, but we show that a convex relaxation can solve it in polynomial time for input instances constructed in a certain way. The input instances for which our algorithm finds the optimal solution consist of k disjoint large cliques (called `planted cliques') that are then obscured by noise edges and noise nodes inserted either at random or by an adversary

    A solution to the slow stabilisation of surface pressure sensors based on the Wilhelmy method

    Get PDF
    Dynamic measurement of surface pressure is of particular interest in the field of Langmuir monolayers, where the change in surface pressure throughout an experiment can provide information on the properties of the monolayer forming material, or on the reaction kinetics of the monolayer’s interaction with other materials. One of the most common methods for the measurement of dynamic surface pressure is the Wilhelmy plate method. This method measures changes in the forces acting upon a thin plate of material at the air-water interface; this measurement is then converted to surface pressure. One version of this method, which uses filter paper plates at the air-water interface, is particularly popular due to their relatively low cost. However, it has been seen that the use of filter paper plates attached to a Wilhelmy balance requires an initial stabilisation period lasting several hours, during which the readings drift from the original baseline. Here the cause of this drift is explored, considering how changes in the weight of the plate over time influence the assumptions on which the surface pressure is derived from the measurements made by the Wilhelmy balance. A simple method for preventing this drift through pre-soaking of the filter paper plates is presented

    A simple method for fabricating phase-shifted fibre Bragg gratings with flexible choice of centre wavelength

    Get PDF
    A simple technique for fabricating phase-shifted fibre Bragg gratings (PSFBGs) without the use of a phase-shifted phase mask is presented. Two, 3-mm long, standard fibre Bragg gratings (FBGs) were inscribed sequentially in singlemode fibre at the same Bragg wavelength such that the FBGs physically overlapped by one grating period. This induces a spectral-hole in the middle of the reflection spectrum of a standard FBG, equivalent to a π-phase shifted FBG. The flexibility of the technique in writing PSFBGs at any choice of wavelength is demonstrated. The results show that PSFBG devices produced by this method are highly reproducible and the process is fas

    Dissolved oxygen sensing using an optical fibre long period grating coated with hemoglobin

    Get PDF
    A long period grating fiber optic sensor coated with hemoglobin is used to detect dissolved oxygen. The sensitivity of this sensor to the ratio of dissolved carbon dioxide to dissolved oxygen is demonstrated via the conversion of carboxyhemoglobin to oxyhemoglobin on the sensor surface. The sensor shows good repeatability with a %CV of less than 1% for carboxyhemoglobin and oxyhemoglobin states with no measurable drift or hysteresis

    Monitoring techniques for the manufacture of tapered optical fibers

    Get PDF
    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 ÎĽm and with waist lengths of 20 mm using single-mode SMF-28 fiber

    Optical coherence tomography with a Fizeau interferometer configuration

    Get PDF
    We report the investigation of a Fizeau interferometer-based OCT system. A secondary processing interferometer is necessary in this configuration, to compensate the optical path difference formed in the Fizeau interferometer between the end of the fibre and the sample. The Fizeau configuration has the advantage of 'downlead insensitivity', which eliminates polarisation fading. An optical circulator is used in our system to route light efficiently from the source to the sample, and backscattered light from the sample and the fibre end through to the Mach-Zehnder processing interferometer. The choice of a Mach- Zehnder processing interferometer, from which both antiphase outputs are available, facilitates the incorporation of balanced detection, which often results in a large improvement in the Signal-to-Noise ratio (SNR) compared with the use of a single detector. Balanced detection comprises subtraction of the two antiphase interferometer outputs, implying that the signal amplitude is doubled and the noise is well reduced. It has been discerned that the SNR drops when the refractive index variation at a boundary is small. Several OCT images of samples (resin, resin + crystals, fibre composite) are presented
    • …
    corecore