12 research outputs found
Doripenem in hospital infections: a focus on nosocomial pneumonia, complicated intra-abdominal infections, and complicated urinary tract infections
Doripenem is the latest carbapenem on the market to date. Although not an antibiotic in a new class, it offers a glimmer of hope in combating serious infections secondary to multidrug-resistant Gram-negative bacteria when we have not seen a new class of antibacterial, particularly for Gram-negative bacteria, for more than 10 years. In vitro, doripenem exhibits a broad spectrum of activity against Gram-positive and Gram-negative bacteria, including extended-spectrum β-lactamase (ESBL) and Amp-C β-lactamase producing Enterobacteriaceae and anaerobes. Doripenem also exhibits better in vitro activity against Pseudomonas aeruginosa compared to other anti-pseudomonal carbapenems. It combines the desirable activities of both imipenem and meropenem. It has similar activity to imipenem against Gram-positive pathogens and has the antimicrobial spectrum of meropenem against Gram-negative organisms. Several randomized clinical trials have demonstrated that doripenem is non-inferior to meropenem, imipenem, piperacillin/tazobactam, or levofloxacin in its efficacy and safety profile in treating a wide range of serious bacterial infections including intra-abdominal infection, complicated urinary tract infection, and nosocomial pneumonia. Due to its wide spectrum of activity and good safety profile it is susceptible to misuse leading to increasing rates of resistance. Judicious use should be considered when using doripenem as a first-line agent or drug of choice for serious infections. Doripenem is a well-tolerated drug with common adverse effects including headache, nausea and diarrhea. Caution should be used in patients with hypersensitivity to carbapenems and adverse reactions to β-lactam agents. Dosage adjustment is needed for patients with renal impairment. Doripenem has demonstrated economic and clinical benefits. It has been shown to reduce hospital length of stay and duration of mechanical ventilation for intensive care unit (ICU) patients. Therefore, doripenem is a welcome addition to our limited armamentarium of antibiotics available to treat serious bacterial infections in hospitalized patients
Combining Microarray Technology and Molecular Epidemiology to Identify Genes Associated with Invasive Group B Streptococcus
Many bacterial species function as both commensals and pathogens; we used this dual nature to develop a high-throughput molecular epidemiological approach to identifying bacterial virulence genes. We applied our approach to Group B Streptococcus (GBS). Three representative commensal and one invasive GBS isolates were selected as tester strains from a population-based collection. We used microarray-based comparative genomic hybridization to identify open reading frames (ORFs) present in two sequenced invasive strains, but absent or divergent in tester strains. We screened 23 variable ORFs against 949 GBS isolates using a GBS Library on a Slide (LOS) microarray platform. Four ORFs occurred more frequently in invasive than commensal isolates, and one appeared more frequently in commensal isolates. Comparative hybridization using an oligonucleotide microarray, combined with epidemiologic screening using the LOS microarray platform, enabled rapid identification of bacterial genes potentially associated with pathogenicity
Frequency of antimicrobial resistance among invasive and colonizing Group B Streptococcal isolates
BACKGROUND: Group B Streptococcus (GBS) remains susceptible to penicillin, however, resistance to second-line antimicrobials, clindamycin and erythromycin, has increased since 1996. We describe the age-specific antibiotic susceptibility profile and capsular type distribution among invasive and colonizing GBS strains. METHODS: We tested 486 invasive GBS isolates from individuals of all ages collected by a Wisconsin surveillance system between 1998 and 2002 and 167 colonizing strains collected from nonpregnant college students during 2001 in Michigan. Antimicrobial susceptibility testing was performed by disk diffusion or Etest and capsular typing was performed using DNA dot blot hybridization RESULTS: 20.0% (97/486) of invasive and 40.7% (68/167) of colonizing isolates were resistant to clindamycin (P < .001) and 24.5% (119/486) of invasive and 41.9% (70/167) of colonizing isolates were resistant to erythromycin (P < .001). Similarly, 19.8% (96/486) of invasive and 38.3% (64/167) of colonizing isolates were resistant to both antimicrobial agents (P < .001). 29.4% (5/17) of invasive isolates from persons 18–29 years of age and 24.3% (17/70) of invasive isolates from persons 30–49 years of age were resistant to clindamycin. Similarly, 35.3% (6/17) of invasive isolates from persons 18–29 years of age and 31.4% (22/70) of invasive isolates from persons 30–49 years of age were resistant to erythromycin. 34.7% (26/75) of invasive isolates from persons < 1 year of age were capsular type Ia, whereas capsular type V predominated among isolates from adults. CONCLUSION: Clindamycin and erythromycin resistance rates were high among isolates colonizing nonpregnant college students and invasive GBS isolates, particularly among the colonizing isolates. Susceptibility profiles were similar by age although the proportion of clindamycin and erythromycin resistance among invasive isolates was highest among persons 18–49 years of age. Increasing antimicrobial resistance has implications for GBS disease treatment and intrapartum prophylaxis among penicillin intolerant patients
The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates
BACKGROUND: Group B Streptococcus (GBS) causes severe infections in very young infants and invasive disease in pregnant women and adults with underlying medical conditions. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. Three proteins, Rib encoded by rib, and alpha and beta C proteins encoded by bca and bac, respectively, have been suggested as potential vaccine candidates for GBS. It is not known, however, whether these genes occur more frequently in invasive versus colonizing GBS strains. METHODS: We screened 162 invasive and 338 colonizing GBS strains from different collections using dot blot hybridization to assess the frequency of bca, bac and rib. All strains were defined by serotyping for capsular type, and frequency differences were tested using the Chi square test. RESULTS: Genes encoding the beta C protein (bac) and Rib (rib) occurred at similar frequencies among invasive and colonizing isolates, bac (20% vs. 23%), and rib (28% vs. 20%), while the alpha (bca) C protein was more frequently found in colonizing strains (46%) vs, invasive (29%). Invasive strains were associated with specific serotype/gene combinations. CONCLUSION: Novel virulence factors must be identified to better understand GBS disease