75 research outputs found

    Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    Full text link
    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [OIII]/Hβ\beta versus [NII]/Hα\alpha nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z23z\simeq2-3 galaxies, but higher than those in normal SDSS galaxies by \simeq0.6~dex and \simeq0.9~dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows 0.2-0.2~dex offset from that in SDSS star-forming galaxies at the low mass end, which is consistent with the MZR of the z23z\sim2-3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron densities in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameter and electron density to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.Comment: 13 pages, 11 figures, accepted by Ap

    Testing the global star formation relation: An HCO+ (3-2) mapping study of Red MSX sources in the Bolocam Galactic Plane Survey

    Full text link
    We present an analysis of the relation between the star formation rate (SFR) and mass of dense gas in Galactic clumps and nearby galaxies. Using the bolometric luminosity as a measure of SFR and the molecular line luminosity of HCO+ (3-2) as a measure of dense gas mass, we find that the relation between SFR and M_{dense} is approximately linear. This is similar to published results derived using HCN (1-0) as a dense gas tracer. HCO+ (3-2) and HCN (1-0) have similar conditions for excitation. Our work includes 16 Galactic clumps that are in both the Bolocam Galactic Plane Survey and the Red MSX Survey, 27 water maser sources from the literature, and the aforementioned HCN (1-0) data. Our results agree qualitatively with predictions of recent theoretical models which state that the nature of the relation should depend on how the critical density of the tracer compares with the mean density of the gas.Comment: 38 pages (with full table), 3 figure

    Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at z>1

    Get PDF
    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two hour exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.Comment: 7 pages, 4 figures. Accepted to ApJ Letter

    ALMA CO Clouds and Young Star Complexes in the Interacting Galaxies IC 2163 and NGC 2207

    Get PDF
    Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Debra Meloy Elmegreen, et al, 'ALMA CO Clouds and Young Star Complexes in the Interacting Galaxies IC 2163 and NGC 2207', The Astrophysical Journal, 841:43 (10pp), 22 May 2017, doi: https://doi.org/10.3847/1538-4357/aa6ba5. © 2017. The American Astronomical Society. All rights reserved.ALMA observations of CO(1-0) emission in the interacting galaxies IC 2163 and NGC 2207 are used to determine the properties of molecular clouds and their association with star-forming regions observed with the Hubble Space Telescope. Half of the CO mass is in 249 clouds each more massive than 4.0x10^5Mo. The mass distribution functions for the CO clouds and star complexes in a galactic-scale shock front in IC 2163 both have a slope on a log-log plot of -0.7, similar to what is observed in Milky Way clouds. The molecular cloud mass function is steeper in NGC 2207. The CO distribution in NGC 2207 also includes a nuclear ring, a mini-bar, and a mini-starburst region that dominates the 24micron, radio, and Halpha emission in both galaxies. The ratio of the sum of the masses of star complexes younger than 30 Myr to the associated molecular cloud masses is ~4%. The maximum age of star complexes in the galactic-scale shock front in IC 2163 is about 200 Myr, the same as the interaction time of the two galaxies, suggesting the destruction of older complexes in the eyelids.Peer reviewe

    Gemini Deep Deep Survey VI: Massive Hdelta-strong galaxies at z=1

    Full text link
    We show that there has been a dramatic decline in the abundance of massive galaxies with strong Hdelta stellar absorption lines from z=1.2 to the present. These ``Hdelta-strong'', or HDS, galaxies have undergone a recent and rapid break in their star-formation activity. Combining data from the Gemini Deep Deep and the Sloan Digital Sky Surveys to make mass-matched samples (M*>=10^10.2 Msun), with 25 and 50,255 galaxies, respectively), we find that the fraction of galaxies in an HDS phase has decreased from about 50% at z=1.2 to a few percent today. This decrease in fraction is due to an actual decrease in the number density of massive HDS systems by a factor of 2-4, coupled with an increase in the number density of massive galaxies by about 30 percent. We show that this result depends only weakly on the threshold chosen for the Hdelta equivalent width to define HDS systems (if greater than 4 A) and corresponds to a (1+z)^{2.5\pm 0.7} evolution. Spectral synthesis studies of the high-redshift population using the PEGASE code, treating Hdelta_A, EW[OII], Dn4000, and rest-frame colors, favor models in which the Balmer absorption features in massive Hdelta-strong systems are the echoes of intense episodes of star-formation that faded about 1 Gyr prior to the epoch of observation. The z=1.4-2 epoch appears to correspond to a time at which massive galaxies are in transition from a mode of sustained star formation to a relatively quiescent mode with weak and rare star-formation episodes. We argue that the most likely local descendants of the distant massive HDS galaxies are passively evolving massive galaxies in the field and small groups.Comment: 16 pages, 12 figures, 3 tables, uses emulateapj.sty; updated to match the version accepted by ApJ. One figure added, conclusions unchange

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure
    corecore