37 research outputs found

    Genetic Variation in the Proximal Promoter of ABC and SLC Superfamilies: Liver and Kidney Specific Expression and Promoter Activity Predict Variation

    Get PDF
    Membrane transporters play crucial roles in the cellular uptake and efflux of an array of small molecules including nutrients, environmental toxins, and many clinically used drugs. We hypothesized that common genetic variation in the proximal promoter regions of transporter genes contribute to observed variation in drug response. A total of 579 polymorphisms were identified in the proximal promoters (−250 to +50 bp) and flanking 5′ sequence of 107 transporters in the ATP Binding Cassette (ABC) and Solute Carrier (SLC) superfamilies in 272 DNA samples from ethnically diverse populations. Many transporter promoters contained multiple common polymorphisms. Using a sliding window analysis, we observed that, on average, nucleotide diversity (π) was lowest at approximately 300 bp upstream of the transcription start site, suggesting that this region may harbor important functional elements. The proximal promoters of transporters that were highly expressed in the liver had greater nucleotide diversity than those that were highly expressed in the kidney consistent with greater negative selective pressure on the promoters of kidney transporters. Twenty-one promoters were evaluated for activity using reporter assays. Greater nucleotide diversity was observed in promoters with strong activity compared to promoters with weak activity, suggesting that weak promoters are under more negative selective pressure than promoters with high activity. Collectively, these results suggest that the proximal promoter region of membrane transporters is rich in variation and that variants in these regions may play a role in interindividual variation in drug disposition and response

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    l e t t e r s Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genomewide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3′ untranslated region of P2RY11, the purinergic receptor subtype P2Y 11 gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10 −10 , odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The diseaseassociated allele is correlated with reduced expression of P2RY11 in CD8 + T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y₁₁ gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10⁻¹⁰, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov'tresearch support, u.s. gov't, p.h.s.2011 Jan2010 12 19importedErratum in : Nat Genet. 2011 Oct;43(10):1040

    Deletion distal to the PAX6 coding region reveals a novel basis for familial cosegregation of aniridia and diabetes mellitus

    No full text
    Aims: Analyze cosegregation of aniridia and diabetes to identify genetic criteria for detection and early treatment of diabetes-susceptible aniridia patients. Methods: We assessed a two-generation family: three individuals with aniridia, two previously diagnosed as type 2 diabetes. One individual with aniridia, with unknown diabetes status, was evaluated by oral glucose tolerance test. Genetic analysis of aniridia-associated genes was performed on all available family members. Candidate genes were functionally tested by gene silencing in MIN6 pancreatic β-cells. Results: A 25 year old male with aniridia had a diabetic oral glucose tolerance test despite a normal fasting blood glucose. A 484-630 kb deletion ∼120 kb distal to PAIRED BOX 6 (PAX6) showed dominant cosegregation with aniridia and diabetes in all affected family members. The deleted region contains regulatory elements for PAX6 expression and four additional coding regions. Knockdown of two of the deleted genes (Dnajc24 or Immp1l) with Pax6 impaired glucose-stimulated insulin secretion. Conclusions: We demonstrate dominant cosegregation of diabetes and aniridia with a deletion distal to PAX6, which is clinically distinct from the mild glucose intolerance previously reported with PAX6 coding mutations. Asymptomatic aniridia individuals appear at risk of diabetes (and its complications) and could benefit from earlier diagnosis and treatment

    Pharmacological Enhancement of Regeneration-Dependent Regulatory T Cell Recruitment in Zebrafish

    No full text
    Regenerative capacity varies greatly between species. Mammals are limited in their ability to regenerate damaged cells, tissues and organs compared to organisms with robust regenerative responses, such as zebrafish. The regeneration of zebrafish tissues including the heart, spinal cord and retina requires foxp3a+ zebrafish regulatory T cells (zTregs). However, it remains unclear whether the muted regenerative responses in mammals are due to impaired recruitment and/or function of homologous mammalian regulatory T cell (Treg) populations. Here, we explore the possibility of enhancing zTreg recruitment with pharmacological interventions using the well-characterized zebrafish tail amputation model to establish a high-throughput screening platform. Injury-infiltrating zTregs were transgenically labelled to enable rapid quantification in live animals. We screened the NIH Clinical Collection (727 small molecules) for modulators of zTreg recruitment to the regenerating tissue at three days post-injury. We discovered that the dopamine agonist pramipexole, a drug currently approved for treating Parkinson’s Disease, specifically enhanced zTreg recruitment after injury. The dopamine antagonist SCH-23390 blocked pramipexole activity, suggesting that peripheral dopaminergic signaling may regulate zTreg recruitment. Similar pharmacological approaches for enhancing mammalian Treg recruitment may be an important step in developing novel strategies for tissue regeneration in humans

    Common Variation in Fatty Acid Genes and Resuscitation From Sudden Cardiac Arrest

    No full text
    BACKGROUND: Fatty acids provide energy and structural substrates for the heart and brain and may influence resuscitation from sudden cardiac arrest (SCA). We investigated whether genetic variation in fatty acid metabolism pathways was associated with SCA survival. METHODS AND RESULTS: Subjects (mean age 67, 80% male, Caucasian) were out-of-hospital SCA patients found in ventricular fibrillation in King County, WA. We compared subjects who survived to hospital admission (n=664) with those who did not (n=689), and subjects who survived to hospital discharge (n=334) with those who did not (n=1019). Associations between survival and genetic variants were assessed using logistic regression adjusting for age, gender, location, time to arrival of paramedics, whether the event was witnessed, and receipt of bystander CPR. Within-gene permutation tests were used to correct for multiple comparisons. Variants in five genes were significantly associated with SCA survival. After correction for multiple comparisons, SNPs in ACSL1 and ACSL3 were significantly associated with survival to hospital admission. SNPs in ACSL3, AGPAT3, MLYCD, and SLC27A6 were significantly associated with survival to hospital discharge. CONCLUSIONS: Our findings indicate that variants in genes important in fatty acid metabolism are associated with SCA survival in this population
    corecore