24 research outputs found

    Evaluation of adherence to a daily progestin-only pill in a simulated over-the-counter setting

    Get PDF
    ObjectiveThe Adherence with Continuous Dose Oral Contraceptive: Evaluation of Self-Selection and Use (ACCESS) study assessed whether consumers can adhere to the regimen for a progestin-only pill (norgestrel 0.075 mg) in an over-the-counter (OTC) setting.Study DesignAn actual use study in a simulated OTC environment assessed adherence to directions to take norgestrel 0.075 mg every day at the same time in 883 participants for up to 24 weeks.ResultsEighty-five percent (747/883) of participants reported ≥85% adherence to taking norgestrel 0.075 mg every day and reported taking their dose within three hours of their scheduled dosing time on 96% of days.When accounting for use of a condom for 48 hours if a pill was missed, participants reported correctly following the label’s directed use for 97% of doses overall, with 95% of participants following label directions for ≥85% of doses.The main limitations were related to finding a balance between intensely collecting data to ensure accurate assessment of adherence and leaving users to behave as they would in a real OTC situation without healthcare practitioner intervention. We observed that some participants reported taking more doses than they could have based on the supply of medication given to them. To fully examine the situation, and the impact on the conclusions, additional post hoc sensitivity analyses were performed, and showed remarkably consistent results.ConclusionsConsumers were highly adherent to taking norgestrel 0.075 mg when using only the information provided by the proposed OTC label

    H2 formation on interstellar dust grains: the viewpoints of theory, experiments, models and observations

    Get PDF
    Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of interstellar grains. The micro-physics of the formation process has been investigated intensively in the last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives of the probable revolution brought by the future satellite JWST, this article has been written to present what we think we know about the H formation in a variety of interstellar environments.VW’s research is funded by an ERC Starting Grant (3DICE, grant agreement 336474). GV acknowledges financial support from the National Science Foundation’s Astronomy & Astrophysics Division (Grants No. 1311958 and 1615897). LH acknowledges support from ERC Consolidator Grant GRANN (grant agreement no. 648551). GN acknowledges support from the Swedish Research Council. VW, FD and SM acknowledge the CNRS program ”Physique et Chimie du Milieu Interstellaire” (PCMI) co-funded bythe Centre National d’Etudes Spatiales (CNES). SDP acknowledges funding from STFC, UK. V.V acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MagneticYSOS project, grant agreement No 679937)

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Effect of angiotensin II-induced changes in perfusion flow rate on chlorothiazide transport in the isolated perfused rat kidney

    Full text link
    Angiotensin II was used as a probe to study the effect of changes in perfusate flow rate on the renal clearance parameters of chlorothiazide in the isolated perfused rat kidney. Perfusion studies were performed in five rats with no angiotensin II present in the perfusate and in five rats with a 1–4 ng/min infusion of angiotensin II into the perfusate. Angiotensin II had a dramatic effect on the renal hemodynamics, resulting in a 43% decrease in perfusate flow, a 16% decrease in glomerular filtration rate (GFR), and a 45% increase in filtration fraction. Values for the fractional excretion of glucose were low and consistent, with or without angiotensin II. Although the unbound fraction (fu) of chlorothiazide was unchanged between treatments, the renal (CL r ) and the secretion clearances were reduced by about 50% in the presence of angiotensin II; the excretion ratio [ER=CL r /(fu·GFR)] was reduced by 38% with angiotensin II present in the perfusate. Analysis of the data was complicated by the presence of a capacity-limited transport for renal tubular secretion. Transport parameters (±SD) were obtained and the corrected intrinsic secretory clearance [(V max /GFR)/K m ] of chlorothiazide was 123 ± 18 without angiotensin II vs. 72.8 ± 30.0 with angiotensin II. These results demonstrate that alterations in organ perfusion can significantly reduce the clearance parameters of chlorothiazide in the rat IPK. These flow-induced changes in intrinsic secretory transport may reflect perturbations other than that of perfusion flow rate alone .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45047/1/10928_2005_Article_BF01071001.pd

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore