24 research outputs found

    Event Identification as a Decision Process with Non-linear Representation of Text

    Full text link
    We propose scale-free Identifier Network(sfIN), a novel model for event identification in documents. In general, sfIN first encodes a document into multi-scale memory stacks, then extracts special events via conducting multi-scale actions, which can be considered as a special type of sequence labelling. The design of large scale actions makes it more efficient processing a long document. The whole model is trained with both supervised learning and reinforcement learning.Comment: 8 pages, 8 figure

    RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    No full text
    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex

    Phosphorylation of FMRP inhibits association with Dicer

    No full text
    Fragile X syndrome is caused by an absence of the protein product of the fragile X mental retardation gene (FMR1). The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates translation of associated mRNAs; however, the mechanism for this regulation remains unknown. Constitutively, phosphorylated FMRP (P-FMRP) is found associated with stalled untranslating polyribosomes, and translation of at least one mRNA is down-regulated when FMRP is phosphorylated. Based on our hypothesis that translational regulation by P-FMRP is accomplished through association with the microRNA (miRNA) pathway, we developed a phospho-specific antibody to P-FMRP and showed that P-FMRP associates with increased amounts of precursor miRNAs (pre-miRNA) compared with total FMRP. Furthermore, P-FMRP does not associate with Dicer or Dicer-containing complexes in coimmunoprecipitation experiments or in an in vitro capture assay using a P-FMRP peptide sequence bound to agarose beads. These data show that Dicer-containing complexes bind FMRP at amino acids 496–503 and that phosphorylation disrupts this association with a consequent increase in association with pre-miRNAs. In sum, we propose that in addition to regulating translation, phosphorylation of FMRP regulates its association with the miRNA pathway by modulating association with Dicer

    Fragile X protein family member FXR1P is regulated by microRNAs

    No full text
    FXR1P is one of two autosomal paralogs of the fragile X mental retardation protein FMRP. The absence of FMRP causes fragile X syndrome, the leading cause of hereditary mental retardation. FXR1P plays an important role in normal muscle development and has been implicated in facioscapulohumeral muscular dystrophy (FSHD). Its absence also causes cardiac abnormalities in both mice and zebrafish. To examine miRNA-mediated regulation of FMRP and FXR1P, we studied their expression in a conditional Dicer knockdown cell line, DT40. We found that FXR1P, but not FMRP, is significantly increased upon Dicer knockdown and the consequent reduction of miRNAs, suggesting that FXR1P is regulated by miRNAs while FMRP is not in DT40 cells. Expression of a luciferase reporter bearing the 3′ untranslated region (3′UTR) of FXR1 was significantly increased in the absence of miRNAs, confirming miRNA-mediated regulation of FXR1P, while a luciferase reporter bearing the FMR1 3′UTR was not. We identified one of the regulatory regions in the 3′UTR of FXR1 by removing a conserved, 8-nucleotide miRNA seed sequence common to miRNAs 25, 32, 92, 363, and 367 and demonstrated loss of miRNA-mediated suppression. Treatment with specific miRNA hairpin inhibitors to each of the miRNAs in the seed sequence showed that miRs 92b, 363, and 367 regulated FXR1P expression. Accordingly, overexpression of the miRNA 367 mimic significantly decreased endogenous FXR1P expression in human cell lines HEK-293T and HeLa. We report for the first time that FXR1P is regulated through miRNA binding, with one site being the miR-25/32/92/363/367 seed sequence

    Fragile X Mental Retardation Protein FMRP Binds mRNAs in the Nucleusâ–¿

    No full text
    The fragile X mental retardation protein FMRP is an RNA binding protein that associates with a large collection of mRNAs. Since FMRP was previously shown to be a nucleocytoplasmic shuttling protein, we examined the hypothesis that FMRP binds its cargo mRNAs in the nucleus. The enhanced green fluorescent protein-tagged FMRP construct (EGFP-FMRP) expressed in Cos-7 cells was efficiently exported from the nucleus in the absence of its nuclear export sequence and in the presence of a strong nuclear localization sequence (the simian virus 40 [SV40] NLS), suggesting an efficient mechanism for nuclear export. We hypothesized that nuclear FMRP exits the nucleus through its bound mRNAs. Using silencing RNAs to the bulk mRNA exporter Tap/NXF1, we observed a significantly increased number of cells containing EGFP-FMRP in the nucleus, which was further augmented by removal of FMRP's nuclear export sequence. Nuclear-retained SV40-FMRP could be released upon treatment with RNase. Further, Tap/NXF1 coimmunoprecipitated with EGFP-FMRP in an RNA-dependent manner and contained the FMR1 mRNA. To determine whether FMRP binds pre-mRNAs cotranscriptionally, we expressed hemagglutinin-SV40 FMRP in amphibian oocytes and found it, as well as endogenous Xenopus FMRP, on the active transcription units of lampbrush chromosomes. Collectively, our data provide the first lines of evidence that FMRP binds mRNA in the nucleus
    corecore