34 research outputs found

    Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.

    Get PDF
    Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.Wellcome Trust Senior Investigator Award 106260/Z/14/Z HORIZON2020/European Research Council Consolidator Grant 64888

    Microbiota and immunity in the newborn

    No full text
    Although the fetus in the womb lives in a sterile environment and is only colonized with microbes at birth, a transfer of microbial metabolites from the maternal microbiota to the fetus already takes place during pregnancy. These promote the maturation of the child's immune system. After birth, breast milk and a development of the immune system in harmony with a balanced intestinal flora set the course for a healthy life

    Maternal microbiota and antibodies as advocates of neonatal health

    No full text
    Mammalian body surfaces are inhabited by vast numbers of microbes, the commensal microbiota, which help the host to digest food, provide nutrients, and mature its immune system. For a long time, postnatal colonization was believed to be the main stimulus for microbial-induced immune development. Using a model of reversible colonization of germ-free mice during gestation, we recently showed that the microbial shaping of the neonatal immune system begins even before birth through molecular signals derived from the microbiota of the mother. Maternal microbiota was important to mature intestinal innate immune cells and to alter intestinal gene expression profiles in the offspring. These changes prepare the newborn for postnatal colonization. The majority of the gestational colonization-dependent effects required maternal antibodies. Here, we discuss and provide further evidence how maternal antibodies are important players in transferring a signal originating from the maternal intestinal microbiota to the offspring.ISSN:1949-0976ISSN:1949-098

    Microbial-host molecular exchange and its functional consequences in early mammalian life

    No full text
    Molecules from symbiotic microorganisms pervasively infiltrate almost every organ system of a mammalian host, marking the initiation of microbial-host mutualism in utero, long before the newborn acquires its own microbiota. Starting from in utero development, when maternal microbial molecules can penetrate the placental barrier, we follow the different phases of adaptation through the life events of birth, lactation, and weaning, as the young mammal adapts to the microbes that colonize its body surfaces. The vulnerability of early-life mammals is mitigated by maternal detoxification and excretion mechanisms, the protective effects of maternal milk, and modulation of neonatal receptor systems. Host adaptations to microbial exposure during specific developmental windows are critical to ensure organ function for development, growth, and immunity

    Safety of a Novel Listeria monocytogenes-Based Vaccine Vector Expressing NcSAG1 (Neospora caninum Surface Antigen 1).

    Get PDF
    Listeria monocytogenes (LM) has been proposed as vaccine vector in various cancers and infectious diseases since LM induces a strong immune response. In this study, we developed a novel and safe LM-based vaccine vector platform, by engineering a triple attenuated mutant (Lm3Dx) (ΔactA, ΔinlA, ΔinlB) of the wild-type LM strain JF5203 (CC 1, phylogenetic lineage I). We demonstrated the strong attenuation of Lm3Dx while maintaining its capacity to selectively infect antigen-presenting cells (APCs) in vitro. Furthermore, as proof of concept, we introduced the immunodominant Neospora caninum (Nc) surface antigen NcSAG1 into Lm3Dx. The NcSAG1 protein was expressed by Lm3Dx_SAG1 during cellular infection. To demonstrate safety of Lm3Dx_SAG1 in vivo, we vaccinated BALB/C mice by intramuscular injection. Following vaccination, mice did not suffer any adverse effects and only sporadically shed bacteria at very low levels in the feces (<100 CFU/g). Additionally, bacterial load in internal organs was very low to absent at day 1.5 and 4 following the 1st vaccination and at 2 and 4 weeks after the second boost, independently of the physiological status of the mice. Additionally, vaccination of mice prior and during pregnancy did not interfere with pregnancy outcome. However, Lm3Dx_SAG1 was shed into the milk when inoculated during lactation, although it did not cause any clinical adverse effects in either dams or pups. Also, we have indications that the vector persists more days in the injected muscle of lactating mice. Therefore, impact of physiological status on vector dynamics in the host and mechanisms of milk shedding requires further investigation. In conclusion, we provide strong evidence that Lm3Dx is a safe vaccine vector in non-lactating animals. Additionally, we provide first indications that mice vaccinated with Lm3Dx_SAG1 develop a strong and Th1-biased immune response against the Lm3Dx-expressed neospora antigen. These results encourage to further investigate the efficiency of Lm3Dx_SAG1 to prevent and treat clinical neosporosis

    In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes.

    Get PDF
    The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome's annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, g-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes

    Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota.

    Get PDF
    Mononuclear phagocytes are an important component of an innate immune system perceived as a system ready to react upon encounter of pathogens. Here, we show that in response to microbial stimulation, mononuclear phagocytes residing in nonmucosal lymphoid organs of germ-free mice failed to induce expression of a set of inflammatory response genes, including those encoding the various type I interferons (IFN-I). Consequently, NK cell priming and antiviral immunity were severely compromised. Whereas pattern recognition receptor signaling and nuclear translocation of the transcription factors NF-κB and IRF3 were normal in mononuclear phagocytes of germ-free mice, binding to their respective cytokine promoters was impaired, which correlated with the absence of activating histone marks. Our data reveal a previously unrecognized role for postnatally colonizing microbiota in the introduction of chromatin level changes in the mononuclear phagocyte system, thereby poising expression of central inflammatory genes to initiate a powerful systemic immune response during viral infection

    The immunological functions of the Appendix: an example of redundancy?

    No full text
    Biological redundancy ensures robustness in living organisms at several levels, from genes to organs. In this review, we explore the concept of redundancy and robustness through an analysis of the caecal appendix, an organ that is often considered to be a redundant remnant of evolution. However, phylogenic data show that the Appendix was selected during evolution and is unlikely to disappear once it appeared. In humans, it is highly conserved and malformations are extremely rare, suggesting a role for that structure. The Appendix could perform a dual role. First, it is a concentrate of lymphoid tissue resembling Peyer's patches and is the primary site for immunoglobulin A production which is crucial to regulate the density and quality of the intestinal flora. Second, given its shape and position, the Appendix could be a unique niche for commensal bacteria in the body. It is extremely rich in biofilms that continuously shed bacteria into the intestinal lumen. The Appendix contains a microbiota as diverse as that found in the colon and could replenish the large intestine with healthy flora after a diarrhea episode. In conditions of modern medicine hygiene, and people live healthy without their appendix. However, several reports suggest that the effects of appendectomy could be subtler and associated with the development of inflammatory conditions such as inflammatory bowel disease (IBD), heart disease but also in less expected disorders such as Parkinson's disease. Lack of an Appendix also predicts a worsen outcome for recurrent Clostridium difficile infection, which is the first nosocomial infection in hospitals. Here, we review the literature and in combination with our own data, we suggest that the Appendix might be redundant in its immunological function but unique as a reservoir of microbiota

    Absence of gut microbiota impairs depletion of Paneth cells but not goblet cells in germ-free Atoh1lox/lox VilCreERT2 mice.

    No full text
    Mouse atonal homolog 1 (Math1/Atoh1) is a basic helix-loop-helix transcription factor important for the differentiation of secretory cells within the intestinal epithelium. The analysis of Paneth depletion efficiency upon Math1lox/loxVilCreERT2 (Math1∆IEC) mice treatment with Tamoxifen in the presence or absence of intestinal microbiota, showed a failure on Paneth cell depletion in germ-free mice as compared to SPF mice. However, goblet cells were efficiently depleted in Math1∆IEC germ-free mice. The gene expression of Math1 was significantly reduced in the ileum of germ-free Math1∆IEC mice 5 days post tamoxifen injection as compared to germ-free control, but its protein expression was still detectable in the nuclei of epithelial cells in the crypts. Germ-free mice showed low proliferative ileal crypts as well as apoptotic cells that were mainly detected in the tip of the villus, consistent with a slow turnover rate of epithelial cells. Although Paneth cells were not depleted in germ-free Math1∆IEC mice for the first 7 weeks after the last tamoxifen injection - far already from the 5 days timelaps observed in SPF conditions- but an incomplete depletion of Paneth cells was observed 14 weeks after last tamoxifen injection. Colonization of germ-free mice restored the phenotype observed in SPF mice, highlighting the regulatory role of gut microbes in our model. We conclude that absence of intestinal microbiota in Math1∆IEC mice is associated with reduced epithelial cell renewal and delays the depletion of preexisting Paneth cells
    corecore