540 research outputs found

    Photon rockets moving arbitrarily in any dimension

    Full text link
    A family of explicit exact solutions of Einstein's equations in four and higher dimensions is studied which describes photon rockets accelerating due to an anisotropic emission of photons. It is possible to prescribe an arbitrary motion, so that the acceleration of the rocket need not be uniform - both its magnitude and direction may vary with time. Except at location of the point-like rocket the spacetimes have no curvature singularities, and topological defects like cosmic strings are also absent. Any value of a cosmological constant is allowed. We investigate some particular examples of motion, namely a straight flight and a circular trajectory, and we derive the corresponding radiation patterns and the mass loss of the rockets. We also demonstrate the absence of "gravitational aberration" in such spacetimes. This interesting member of the higher-dimensional Robinson-Trautman class of pure radiation spacetimes of algebraic type D generalises the class of Kinnersley's solutions that has long been known in four-dimensional general relativity.Comment: Text and figures modified (22 pages, 8 figures). To appear in the International Journal of Modern Physics D, Vol. 20, No..

    Purely electromagnetic spacetimes

    Full text link
    Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.Comment: 8 page

    New Axisymmetric Stationary Solutions of Five-dimensional Vacuum Einstein Equations with Asymptotic Flatness

    Full text link
    New axisymmetric stationary solutions of the vacuum Einstein equations in five-dimensional asymptotically flat spacetimes are obtained by using solitonic solution-generating techniques. The new solutions are shown to be equivalent to the four-dimensional multi-solitonic solutions derived from particular class of four-dimensional Weyl solutions and to include different black rings from those obtained by Emparan and Reall.Comment: 6 pages, 3 figures;typos corrected, presentations improved, references added;accepted versio

    Rotating Black Holes on Kaluza-Klein Bubbles

    Full text link
    Using the solitonic solution generating techniques, we generate a new exact solution which describes a pair of rotating black holes on a Kaluza-Klein bubble as a vacuum solution in the five-dimensional Kaluza-Klein theory. We also investigate the properties of this solution. Two black holes with topology S^3 are rotating along the same direction and the bubble plays a role in holding two black holes. In static case, it coincides with the solution found by Elvang and Horowitz.Comment: 16 pages, 1 figure, minor correctio

    Vacuum solutions of five dimensional Einstein equations generated by inverse scattering method

    Full text link
    We study stationary and axially symmetric two solitonic solutions of five dimensional vacuum Einstein equations by using the inverse scattering method developed by Belinski and Zakharov. In this generation of the solutions, we use five dimensional Minkowski spacetime as a seed. It is shown that if we restrict ourselves to the case of one angular momentum component, the generated solution coincides with a black ring solution with a rotating two sphere which was found by Mishima and Iguchi recently.Comment: 10 pages, accepted for publication in Physical Review

    Isotropy, shear, symmetry and exact solutions for relativistic fluid spheres

    Full text link
    The symmetry method is used to derive solutions of Einstein's equations for fluid spheres using an isotropic metric and a velocity four vector that is non-comoving. Initially the Lie, classical approach is used to review and provide a connecting framework for many comoving and so shear free solutions. This provides the basis for the derivation of the classical point symmetries for the more general and mathematicaly less tractable description of Einstein's equations in the non-comoving frame. Although the range of symmetries is restrictive, existing and new symmetry solutions with non-zero shear are derived. The range is then extended using the non-classical direct symmetry approach of Clarkson and Kruskal and so additional new solutions with non-zero shear are also presented. The kinematics and pressure, energy density, mass function of these solutions are determined.Comment: To appear in Classical and Quantum Gravit

    Relationship Between Solitonic Solutions of Five-Dimensional Einstein Equations

    Get PDF
    We give the relation between the solutions generated by the inverse scattering method and the B\"acklund transformation applied to the vacuum five-dimensional Einstein equations. In particular, we show that the two-solitonic solutions generated from an arbitrary diagonal seed by the B\"acklund transformation are contained within those generated from the same seed by the inverse scattering method.Comment: 17 pages, Some references are added, to be published in Phys.Rev.

    Revisiting Cosmic No-Hair Theorem for Inflationary Settings

    Full text link
    In this work we revisit Wald's cosmic no-hair theorem in the context of accelerating Bianchi cosmologies for a generic cosmic fluid with non-vanishing anisotropic stress tensor and when the fluid energy momentum tensor is of the form of a cosmological constant term plus a piece which does not respect strong or dominant energy conditions. Such a fluid is the one appearing in inflationary models. We show that for such a system anisotropy may grow, in contrast to the cosmic no-hair conjecture. In particular, for a generic inflationary model we show that there is an upper bound on the growth of anisotropy. For slow-roll inflationary models our analysis can be refined further and the upper bound is found to be of the order of slow-roll parameters. We examine our general discussions and our extension of Wald's theorem for three classes of slow-roll inflationary models, generic multi-scalar field driven models, anisotropic models involving U(1) gauge fields and the gauge-flation scenario.Comment: 21 pp, 4 .eps figure

    No news for Kerr-Schild fields

    Full text link
    Algebraically special fields with no gravitational radiation are described. Kerr-Schild fields, which include as a concrete case the Kinnersley photon rocket, form an important subclass of them.Comment: 4 pages, Revtex
    corecore