980 research outputs found

    Noncommutative Einstein-Maxwell pp-waves

    Get PDF
    The field equations coupling a Seiberg-Witten electromagnetic field to noncommutative gravity, as described by a formal power series in the noncommutativity parameters θαβ\theta^{\alpha\beta}, is investigated. A large family of solutions, up to order one in θαβ\theta^{\alpha\beta}, describing Einstein-Maxwell null pp-waves is obtained. The order-one contributions can be viewed as providing noncommutative corrections to pp-waves. In our solutions, noncommutativity enters the spacetime metric through a conformal factor and is responsible for dilating/contracting the separation between points in the same null surface. The noncommutative corrections to the electromagnetic waves, while preserving the wave null character, include constant polarization, higher harmonic generation and inhomogeneous susceptibility. As compared to pure noncommutative gravity, the novelty is that nonzero corrections to the metric already occur at order one in θαβ\theta^{\alpha\beta}.Comment: 19 revtex pages. One refrence suppressed, two references added. Minor wording changes in the abstract, introduction and conclusio

    Extreme throat initial data set and horizon area--angular momentum inequality for axisymmetric black holes

    Full text link
    We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggests that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the non trivial family of spinning Bowen-York initial data.Comment: 11 pages. Changes in presentation and typos correction

    No news for Kerr-Schild fields

    Full text link
    Algebraically special fields with no gravitational radiation are described. Kerr-Schild fields, which include as a concrete case the Kinnersley photon rocket, form an important subclass of them.Comment: 4 pages, Revtex

    Formation of closed timelike curves in a composite vacuum/dust asymptotically-flat spacetime

    Full text link
    We present a new asymptotically-flat time-machine model made solely of vacuum and dust. The spacetime evolves from a regular spacelike initial hypersurface S and subsequently develops closed timelike curves. The initial hypersurface S is asymptotically flat and topologically trivial. The chronology violation occurs in a compact manner; namely the first closed causal curves form at the boundary of the future domain of dependence of a compact region in S (the core). This central core is empty, and so is the external asymptotically flat region. The intermediate region surrounding the core (the envelope) is made of dust with positive energy density. This model trivially satisfies the weak, dominant, and strong energy conditions. Furthermore it is governed by a well-defined system of field equations which possesses a well-posed initial-value problem.Comment: 15 pages; accepted to Phys. Rev. D (no modifications

    Matching of spatially homogeneous non-stationary space--times to vacuum in cylindrical symmetry

    Full text link
    We study the matching of LRS spatially homogeneous collapsing dust space-times with non-stationary vacuum exteriors in cylindrical symmetry. Given an interior with diagonal metric we prove existence and uniqueness results for the exterior. The matched solutions contain trapped surfaces, singularities and Cauchy horizons. The solutions cannot be asymptotically flat and we present evidence that they are singular on the Cauchy horizons.Comment: LaTeX, 15 pages, 1 figure, submitted for publicatio

    Conformal classes of asymptotically flat, static vacuum data

    Full text link
    We show that time-reflection symmetric, asymptotically flat, static vacuum data which admit a non-trivial conformal rescaling which leads again to such data must be axi-symmetric and admit a conformal Killing field. Moreover, it is shown that there exists a 3-parameter family of such data.Comment: 23 page

    Lie point symmetries and the geodesic approximation for the Schr\"odinger-Newton equations

    Full text link
    We consider two problems arising in the study of the Schr\"odinger-Newton equations. The first is to find their Lie point symmetries. The second, as an application of the first, is to investigate an approximate solution corresponding to widely separated lumps of probability. The lumps are found to move like point particles under a mutual inverse-square law of attraction

    Degeneracy measures for the algebraic classification of numerical spacetimes

    Full text link
    We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, Type I, but in many regions approximately, in some sense, Type D. To provide meaning to any claims of "approximate" Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will investigate such a measure, used recently to argue that certain binary black hole merger simulations ring down to the Kerr geometry, after hanging up for some time in Petrov Type II. In particular, we argue that this hangup in Petrov Type II is an artefact of the particular measure being used, and that a geometrically better-motivated measure shows a black hole merger produced by our group settling directly to Petrov Type D.Comment: 14 pages, 7 figures. Version 2 adds two references

    Natural extension of the Generalised Uncertainty Principle

    Full text link
    We discuss a gedanken experiment for the simultaneous measurement of the position and momentum of a particle in de Sitter spacetime. We propose an extension of the so-called generalized uncertainty principle (GUP) which implies the existence of a minimum observable momentum. The new GUP is directly connected to the nonzero cosmological constant, which becomes a necessary ingredient for a more complete picture of the quantum spacetime.Comment: 4 pages, 1 figure, v2 with added references, revised and extended as published in CQ
    • …
    corecore