15 research outputs found

    Quantification and Kinetic Analysis of Grb2-EGFR Interaction on Micro-Patterned Surfaces for the Characterization of EGFR-Modulating Substances

    No full text
    <div><p>The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.</p></div

    Sensitivity of EGFR-Grb2 interaction on μ-biochips.

    No full text
    <p>(A) HeLa cells expressing EGFR-GFP or Grb2-YFP, respectively, grown on anti-EGFR antibody coated μ-biochips at indicated time points after EGF (170 nM) addition. (B) Temporal resolution of the change in contrast induced by EGF (n = 40 cells). (C) Time course of the corresponding F+ and F- signals of EGFR and Grb2, respectively (n = 40 cells). (D) EGF concentration dependent increase of Grb2 contrast (n = 40). Fluorescent contrast was normalized to the value prior to EGF stimulation. Error bars are based on the standard error of the mean. Scale bar  = 5 μm.</p

    Inducibility of EGFR signaling on μ-structured surfaces.

    No full text
    <p>(A) Representative HeLa cell expressing Grb2-YFP grown on an anti-EGFR antibody coated μ-biochip. Induction by EGF (170 nM) for 15 minutes significantly increases the basic fluorescent contrast. (B) Quantification of EGFR-Grb2 interaction by contrast evaluation. Addition of EGF leads to an increase in the Grb2 contrast from ∼0.33 to ∼0.55. Error bars are based on the standard error of the mean (n > 300 cells). Scale bar  =  5 μm.</p

    Stabilization of CCPs on the μ-patterned surface.

    No full text
    <p>(A) Representative FRAP images of a single pattern in HeLa cells expressing Grb2-YFP after EGF stimulation. Preformed CCPs remain stable and are not endocytosed as indicated by recovery of Grb2 at the same position (black arrows). (B) Mean fluorescence recovery curves of bleached cluster (red circle)/non-cluster (green circle) regions within a single pattern of untreated/AG1478-treated (1 μM for 4 hours) cells. Vertical dashed lines represent slow half-times of the different samples. Error bars are based on the standard error of the mean (n = 40 for cluster/non-cluster regions of 10 different cells). Scale bar  =  1 μm. (C) Cartoon indicating the formation and stabilization of CCPs on anti-EGFR antibody coated μ-biochips.</p

    Inhibition of EGFR-Grb2 interaction by the small tyrosine kinase inhibitor AG1478.

    No full text
    <p>(A) Representative HeLa cell pretreated with 1 μM AG1478 for 4 hours expressing Grb2-YFP grown on an anti-EGFR antibody coated μ-biochip at the indicated time points after EGF addition (170 nM). (B) Time course of the Grb2 contrast change upon EGF stimulation in control and AG1478 pretreated (1, 10 μM) cells (n = 50). Pretreatment with a tyrosine kinase inhibitor leads to a decreased contrast compared to untreated cells. Fluorescent contrast was normalized to the value prior to EGF stimulation. (C) Dose-response relationship of the EGFR-Grb2 interaction in cells pretreated with indicated AG1478 concentrations (n = 40). (D) Temporal resolution of Grb2 contrast at different AG1478 concentrations. Cells were incubated with AG1478 and the decrease in contrast was observed for 90 min. Contrast was normalized to the value prior AG1478 addition (n =  40). Error bars are based on the standard error of the mean.</p

    Inhibition of Grb2 recruitment to the EGFR by EGFR-activity modulating drugs.

    No full text
    <p>Grb2 contrast increase upon EGF stimulation (170 nM, 15 min) in cells pre-incubated with the indicated EGFR antagonists for 4 hours in comparison to untreated cells. Error bars are based on the standard error of the mean (n = 40 cells).</p

    Basic principle of the μ-patterning screening assay.

    No full text
    <p>(A) Schematic diagram of EGFR-Grb2 interaction in living cells grown on a functionalized μ-biochip. Cells attach within 2–3 hours after seeding on the μstructured glass surface and endogenous EGFR is captured by anti-EGFR antibodies. Specific interaction of fluorescently labeled Grb2 with the EGFR is characterized by enhanced co-patterning in anti-EGFR antibody enriched regions. (B) Proof of principle. HeLa cells expressing EGFR-GFP are grown on an anti-EGFR antibody coated μ-biochip. Accurate alignment of anti-EGFR antibodies into unblocked spots leads to a strong enrichment of the bait protein (EGFR) into μ-patterns (upper row). Co-localization of the fluorescently labeled prey protein (Grb2-YFP) in anti-EGFR antibody positive regions indicates specific protein-protein interactions (lower row). Scale bars  =  5 μm.</p

    Accumulation of EGFR and Grb2 in clathrin-coated pits (CCPs).

    No full text
    <p>Representative TIRF microscopy images of HeLa cells transfected with clathrin light chain-GFP (CliC-GFP), EGFR-GFP or Grb2-YFP, respectively, co-stained by Transferrin-Alexa647 as a marker for CCPs. Cells were stimulated with EGF for 15 min with simultaneous addition of Tfr-647 (25 μg/ml). Fluorescence intensity profiles are shown on the right for the indicated line scans. Scale bars  = 5 μm.</p

    Biomolecular Characterization of Putative Antidiabetic Herbal Extracts

    No full text
    <div><p>Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (<i>Portulaca oleracea</i>) and tindora (<i>Coccinia grandis</i>) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, <i>in-ovo</i> experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.</p></div
    corecore