44 research outputs found
Bone Marrow-Derived Progenitor Cells Augment Venous Remodeling in a Mouse Dorsal Skinfold Chamber Model
The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment
Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms
Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition
Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial
Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort