3,370 research outputs found

    Positronium in a liquid phase: formation, bubble state and chemical reactions

    Full text link
    This chapter reviews the following items: 1. Energy deposition and track structure of fast positrons: ionization slowing down, number of ion-electron pairs, typical sizes, thermalization, electrostatic interaction between e+ and its blob, effect of local heating; 2. Positronium formation in condensed media: the Ore model, quasifree Ps state, intratrack mechanism of Ps formation; 3. Fast intratrack diffusion-controlled reactions: Ps oxidation and ortho-para conversion by radiolytic products, reaction rate constants, interpretation of the PAL spectra in water at different temperatures; 4. Ps bubble models. "Non-point" positronium: wave function, energy contributions, relationship between the pick-off annihilation rate and the bubble radius

    Renormalized non-modal theory of the kinetic drift instability of plasma shear flows

    Full text link
    The linear and renormalized nonlinear kinetic theory of drift instability of plasma shear flow across the magnetic field, which has the Kelvin's method of shearing modes or so-called non-modal approach as its foundation, is developed. The developed theory proves that the time-dependent effect of the finite ion Larmor radius is the key effect, which is responsible for the suppression of drift turbulence in an inhomogeneous electric field. This effect leads to the non-modal decrease of the frequency and growth rate of the unstable drift perturbations with time. We find that turbulent scattering of the ion gyrophase is the dominant effect, which determines extremely rapid suppression of drift turbulence in shear flow

    Beyond the Point Ps Approximation

    Full text link
    In application to positron annihilation spectroscopy, Ps atom is considered not as a point particle, but as a finite size e+ e- pair localized in a bubble-state in a medium. Variation of the internal Coulombic e+ -e- attraction vs. the bubble radius is estimated

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style

    Formation of quasi-free and bubble positronium states in water and aqueous solutions

    Full text link
    It is shown that in aqueous solutions a positronium atom is first formed in the quasi-free state, and, after 50-100 ps, becomes localized in a nanobubble. Analysis of the annihilation spectra of NaNO3 aqueous solutions shows that the hydrated electron is not involved in the positronium (Ps) formation

    Renormalized theory of the ion cyclotron turbulence in magnetic field--aligned plasma shear flow

    Full text link
    The analytical treatment of nonlinear evolution of the shear-flow-modified current driven ion cyclotron instability and shear-flow-driven ion cyclotron kinetic instabilities of magnetic field--aligned plasma shear flow is presented. Analysis is performed on the base of the nonlinear dispersion equation, which accounts for a new combined effect of plasma turbulence and shear flow. It consists in turbulent scattering of ions across the shear flow with their convection by shear flow and results in enhanced nonlinear broadening of ion cyclotron resonances. This effect is found to lead to the saturation of ion cyclotron instabilities as well as to the development of nonlinear shear flow driven ion cyclotron instability. 52.35.RaComment: 21 page

    Integrability and action operators in quantum Hamiltonian systems

    Get PDF
    For a (classically) integrable quantum mechanical system with two degrees of freedom, the functional dependence H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) of the Hamiltonian operator on the action operators is analyzed and compared with the corresponding functional relationship H(p1,q1;p2,q2)=HC(J1,J2)H(p_1,q_1;p_2,q_2) = H_C(J_1,J_2) in the classical limit of that system. The former is shown to converge toward the latter in some asymptotic regime associated with the classical limit, but the convergence is, in general, non-uniform. The existence of the function H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) in the integrable regime of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter space on which at least two levels are degenerate. The comparative analysis is carried out for an integrable one-parameter two-spin model. Additional results presented for the (integrable) circular billiard model illuminate the same conclusions from a different angle.Comment: 9 page

    Method of training examples in solving inverse ill-posed problems of spectroscopy

    Get PDF
    Further development of the method of computational experiments for solving ill-posed problems is given. The effective (unoverstated) estimate for solution error of the first-kind equation is obtained using the truncating singular numbers spectrum of an operator. It is proposed to estimate the magnitude of the truncation by results of solving model (training, learning) examples close to the initial example (problem). This method takes into account an additional information about the solution and gives a new principle for choosing the regularization parameter and error estimate for equation solution by the Tikhonov regularization method. The method is illustrated by a numerical example from the inverse problem of spectroscopy.Comment: 9 pages, 3 figure
    corecore