242 research outputs found
MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility
Preclinical experiments are carried out with ~20â30 ÎŒm wide, ~10 mm high parallel microbeams of hard, broad-ââwhiteââ-spectrum x rays (~50â600 keV) to investigate microbeam radiation therapy (MRT) of brain tumors in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. Novel physical microdosimetry (implemented with MOSFET chips in the ââedge-onââ mode) and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue-equivalent phantom. Such microbeam irradiation causes minimal damage to normal tissues, possible because of rapid repair of their microscopic lesions. Radiation damage from an array of parallel microbeams tends to correlate with the range of peak-valley dose ratios (PVDR). This paper summarizes comparisons of our dosimetric MOSFET measurements with Monte Carlo calculations. Peak doses at depths \u3c22 mm are 18% less than Monte Carlo values, whereas those depths \u3e22 mm and valley doses at all depths investigated (2 mmâ62 mm) are within 2â13% of the Monte Carlo values. These results lend credence to the use of MOSFET detector systems in edge-on mode for microplanar irradiation dosimetry
Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance
BardetâBiedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBSâinduced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems
The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei
The computer code DECAY4 is developed to generate initial energy, time and
angular distributions of particles emitted in radioactive decays of nuclides
and nuclear (atomic) deexcitations. Data for description of nuclear and atomic
decay schemes are taken from the ENSDF and EADL database libraries. The
examples of use of the DECAY4 code in several underground experiments are
described.Comment: 8 pages, 1 fi
Dynamic Critical Phenomena of Polymer Solutions
Recently, a systematic experiment measuring critical anomaly of viscosity of
polymer solutions has been reported by H. Tanaka and his co-workers
(Phys.Rev.E, 65, 021802, (2002)). According to their experiments, the dynamic
critical exponent of viscosity y_c drastically decreases with increasing the
molecular weight. In this article the kinetic coefficients renormalized by the
non-linear hydrodynamic interaction are calculated by the mode coupling theory.
We predict that the critical divergence of viscosity should be suppressed with
increasing the molecular weight. The diffusion constant and the dynamic
structure factor are also calculated. The present results explicitly show that
the critical dynamics of polymer solutions should be affected by an extra
spatio-temporal scale intrinsic to polymer solutions, and are consistent with
the experiment of Tanaka, et al.Comment: 17 pages, 2 figures, to be published in J.Phys.Soc.Jp
MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility
Preclinical experiments are carried out with ~20â30 ÎŒm wide, ~10 mm high parallel microbeams of hard, broad-ââwhiteââ-spectrum x rays (~50â600 keV) to investigate microbeam radiation therapy (MRT) of brain tumors in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. Novel physical microdosimetry (implemented with MOSFET chips in the ââedge-onââ mode) and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue-equivalent phantom. Such microbeam irradiation causes minimal damage to normal tissues, possible because of rapid repair of their microscopic lesions. Radiation damage from an array of parallel microbeams tends to correlate with the range of peak-valley dose ratios (PVDR). This paper summarizes comparisons of our dosimetric MOSFET measurements with Monte Carlo calculations. Peak doses at depths \u3c22 mm are 18% less than Monte Carlo values, whereas those depths \u3e22 mm and valley doses at all depths investigated (2 mmâ62 mm) are within 2â13% of the Monte Carlo values. These results lend credence to the use of MOSFET detector systems in edge-on mode for microplanar irradiation dosimetry
Paternal Origins and Migratory Episodes of Domestic Sheep
Deng et al. show that domestic sheep harbor four Y chromosome lineages and early expansions of sheep were associated with the segregation of primitive and fat-tailed phenotypes as well as traits selected for different purposes
Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)-Paleoclimate Modeling Intercomparison Project (PMIP4)
Abstract. The modeling of paleoclimate, using physically based tools, is
increasingly seen as a strong out-of-sample test of the models that are used
for the projection of future climate changes. New to the Coupled Model
Intercomparison Project (CMIP6) is the Tier 1
Last Interglacial experiment for 127â000 years ago (lig127k), designed to
address the climate responses to stronger orbital forcing than the
midHolocene experiment, using the same state-of-the-art models as for the future and
following a common experimental protocol. Here we present a first analysis
of a multi-model ensemble of 17 climate models, all of which have completed
the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of
these models varies from 1.8 to 5.6ââC. The seasonal character of
the insolation anomalies results in strong summer warming over the Northern
Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and
much-reduced minimum sea ice in the Arctic. The multi-model results indicate
enhanced summer monsoonal precipitation in the Northern Hemisphere and
reductions in the Southern Hemisphere. These responses are greater in the
lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies
at 127 than 6âka. New synthesis for surface temperature and precipitation, targeted for 127âka, have been developed for comparison to the multi-model ensemble. The
lig127k model ensemble and data reconstructions are in good agreement for summer
temperature anomalies over Canada, Scandinavia, and the North Atlantic and
for precipitation over the Northern Hemisphere continents. The modelâdata
comparisons and mismatches point to further study of the sensitivity of the
simulations to uncertainties in the boundary conditions and of the
uncertainties and sparse coverage in current proxy reconstructions. The CMIP6âPaleoclimate Modeling Intercomparison
Project (PMIP4) lig127k simulations, in combination with the proxy record, improve
our confidence in future projections of monsoons, surface temperature, and
Arctic sea ice, thus providing a key target for model evaluation and
optimization.
</jats:p
Minimalism in Radiation Synthesis of Biomedical Functional Nanogels
A scalable, single-step, synthetic approach for the manufacture of
biocompatible, functionalized micro- and nanogels is presented. In particular,
poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and
nanogels were generated through e-beam irradiation of PVP aqueous solutions in
the presence of a primary amino-group-carrying monomer. Particles with
different hydrodynamic diameters and surface charge densities were obtained at
the variance of the irradiation conditions. Chemical structure was investigated by
different spectroscopic techniques. Fluorescent variants were generated through
fluorescein isothiocyanate attachment to the primary amino groups grafted to
PVP, to both quantify the available functional groups for bioconjugation and
follow nanogels localization in cell cultures. Finally, a model protein, bovine
serum albumin, was conjugated to the nanogels to demonstrate the attachment
of biologically relevant molecules for targeting purposes in drug delivery. The
described approach provides a novel strategy to fabricate biohybrid nanogels
with a very promising potential in nanomedicine
- âŠ