4,572 research outputs found

    Incidental finding of a microsporidian parasite from an AIDS patient

    Get PDF
    Light microscopic examination of feces from a human immunodeficiency virus-positive patient with chronic diarrhea, anorexia, and lethargy revealed the presence of numerous refractile bodies resembling microsporidian spores. They were subsequently identified as belonging to the genus Nosema on the basis of their ultrastructural characteristics. However, the microsporidia were enclosed within striated muscle cells, suggesting that they were probably ingested in food; thus, this represented an incidental finding rather than a true infection

    On the uncertainty relations and squeezed states for the quantum mechanics on a circle

    Get PDF
    The uncertainty relations for the position and momentum of a quantum particle on a circle are identified minimized by the corresponding coherent states. The sqeezed states in the case of the circular motion are introduced and discussed in the context of the uncertainty relations.Comment: 4 figure

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    Metastable Vacua and the Backreacted Stenzel Geometry

    Full text link
    We construct an M-theory background dual to the metastable state recently discussed by Klebanov and Pufu, which corresponds to placing a stack of anti-M2 branes at the tip of a warped Stenzel space. With this purpose we analytically solve for the linearized non-supersymmetric deformations around the warped Stenzel space, preserving the SO(5) symmetries of the supersymmetric background, and which interpolate between the IR and UV region. We identify the supergravity solution which corresponds to a stack of Nˉ\bar{N} backreacting anti-M2 branes by fixing all the 12 integration constants in terms of Nˉ\bar{N}. While in the UV this solution has the desired features to describe the conjectured metastable state of the dual (2+1)-dimensional theory, in the IR it suffers from a singularity in the four-form flux, which we describe in some details.Comment: 33 pages, 3 figure

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    Get PDF
    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS468 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures

    Get PDF
    A stochastic model is proposed for the efficient simulation of complex three-dimensional microstructures consisting of two different phases. The model is based on a hybrid approach, where in a first step a graph model is developed using ideas from stochastic geometry. Subsequently, the microstructure model is built by applying simulated annealing to the graph model. As an example of application, the model is fitted to a tomographic image describing the microstructure of electrodes in Li-ion batteries. The goodness of model fit is validated by comparing morphological characteristics of experimental and simulated data
    • …
    corecore