375 research outputs found

    Weisskopf-Wigner model for wave packet excitation

    Get PDF
    We consider a laser induced molecular excitation process as a decay of a single energy state into a continuum. The analytic results based on Weisskopf-Wigner approach and perturbation calculations are compared with numerical wave packet results. We find that the decay model describes the excitation process well within the expected parameter region.Comment: 14 pages, Latex2.09, 9 Postscript figures embedded using psfig, see also http://www.physics.helsinki.fi/~kasuomin

    Coupled eigenmodes in a two-component Bose-Einstein condensate

    Full text link
    We have studied the elementary excitations in a two-component Bose-Einstein condensate. We concentrate on the breathing modes and find the elementary excitations to possess avoided crossings and regions of coalescing oscillations where both components of the condensates oscillate with same frequency. For large repulsive interactions between the condensates, their oscillational modes tend to decouple due to decreased overlap. A thorough investigation of the eigenmodes near the avoided crossings is presented.Comment: Replacement, 17 pages, 9 figure

    Preservation of Positivity by Dynamical Coarse-Graining

    Full text link
    We compare different quantum Master equations for the time evolution of the reduced density matrix. The widely applied secular approximation (rotating wave approximation) applied in combination with the Born-Markov approximation generates a Lindblad type master equation ensuring for completely positive and stable evolution and is typically well applicable for optical baths. For phonon baths however, the secular approximation is expected to be invalid. The usual Markovian master equation does not generally preserve positivity of the density matrix. As a solution we propose a coarse-graining approach with a dynamically adapted coarse graining time scale. For some simple examples we demonstrate that this preserves the accuracy of the integro-differential Born equation. For large times we analytically show that the secular approximation master equation is recovered. The method can in principle be extended to systems with a dynamically changing system Hamiltonian, which is of special interest for adiabatic quantum computation. We give some numerical examples for the spin-boson model of cases where a spin system thermalizes rapidly, and other examples where thermalization is not reached.Comment: 18 pages, 7 figures, reviewers suggestions included and tightened presentation; accepted for publication in PR

    Sudden death and sudden birth of entanglement in common structured reservoirs

    Get PDF
    We study the exact entanglement dynamics of two qubits in a common structured reservoir. We demonstrate that, for certain classes of entangled states, entanglement sudden death occurs, while for certain initially factorized states, entanglement sudden birth takes place. The backaction of the non-Markovian reservoir is responsible for revivals of entanglement after sudden death has occurred, and also for periods of disentanglement following entanglement sudden birth.Comment: 4 pages, 2 figure

    Open system dynamics with non-Markovian quantum jumps

    Get PDF
    We discuss in detail how non-Markovian open system dynamics can be described in terms of quantum jumps [J. Piilo et al., Phys. Rev. Lett. 100, 180402 (2008)]. Our results demonstrate that it is possible to have a jump description contained in the physical Hilbert space of the reduced system. The developed non-Markovian quantum jump (NMQJ) approach is a generalization of the Markovian Monte Carlo Wave Function (MCWF) method into the non-Markovian regime. The method conserves both the probabilities in the density matrix and the norms of the state vectors exactly, and sheds new light on non-Markovian dynamics. The dynamics of the pure state ensemble illustrates how local-in-time master equation can describe memory effects and how the current state of the system carries information on its earlier state. Our approach solves the problem of negative jump probabilities of the Markovian MCWF method in the non-Markovian regime by defining the corresponding jump process with positive probability. The results demonstrate that in the theoretical description of non-Markovian open systems, there occurs quantum jumps which recreate seemingly lost superpositions due to the memory.Comment: 19 pages, 10 figures. V2: Published version. Discussion section shortened and some other minor changes according to the referee's suggestion

    Validity of adiabaticity in Cavity QED

    Full text link
    This paper deals with the concept of adiabaticity for fully quantum mechanically cavity QED models. The physically interesting cases of Gaussian and standing wave shapes of the cavity mode are considered. An analytical approximate measure for adiabaticity is given and compared with numerical wave packet simulations. Good agreement is obtained where the approximations are expected to be valid. Usually for cavity QED systems, the large atom-field detuning case is considered as the adiabatic limit. We, however, show that adiabaticity is also valid, for the Gaussian mode shape, in the opposite limit. Effective semiclassical time dependent models, which do not take into account the shape of the wave packet, are derived. Corrections to such an effective theory, which are purely quantum mechanical, are discussed. It is shown that many of the results presented can be applied to time dependent two-level systems.Comment: 10 pages, 9 figure

    Observing the spin of a free electron

    Get PDF
    Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions

    Driven harmonic oscillator as a quantum simulator for open systems

    Get PDF
    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for non-Markovian damped harmonic oscillator. In the general framework, the results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals new physical insight into the open system dynamics, e.g. the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.Comment: 10 pages, 4 figures. V2: Minor modifications and added 2 appendixes for more details about calculation

    Systematic Perturbation Theory for Dynamical Coarse-Graining

    Full text link
    We demonstrate how the dynamical coarse-graining approach can be systematically extended to higher orders in the coupling between system and reservoir. Up to second order in the coupling constant we explicitly show that dynamical coarse-graining unconditionally preserves positivity of the density matrix -- even for bath density matrices that are not in equilibrium and also for time-dependent system Hamiltonians. By construction, the approach correctly captures the short-time dynamics, i.e., it is suitable to analyze non-Markovian effects. We compare the dynamics with the exact solution for highly non-Markovian systems and find a remarkable quality of the coarse-graining approach. The extension to higher orders is straightforward but rather tedious. The approach is especially useful for bath correlation functions of simple structure and for small system dimensions.Comment: 17 pages, 5 figures, version accepted for publication in PR

    Conversion of bright magneto-optical resonances into dark at fixed laser frequency for D2 excitation of atomic rubidium

    Full text link
    Nonlinear magneto-optical resonances on the hyperfine transitions belonging to the D2 line of rubidium were changed from bright to dark resonances by changing the laser power density of the single exciting laser field or by changing the vapor temperature in the cell. In one set of experiments atoms were excited by linearly polarized light from an extended cavity diode laser with polarization vector perpendicular to the light's propagation direction and magnetic field, and laser induced fluorescence (LIF) was observed along the direction of the magnetic field, which was scanned. A low-contrast bright resonance was observed at low laser power densities when the laser was tuned to the Fg=2 --> Fe=3 transition of Rb-87 and near to the Fg=3 --> Fe=4 transition of Rb-85. The bright resonance became dark as the laser power density was increased above 0.6mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2 --> Fe=3 transition of Rb-87 was excited with circularly polarized light in a second set of experiments, a bright resonance was observed, which became dark when the temperature was increased to around 50C. The experimental observations at room temperature could be reproduced with good agreement by calculations based on a theoretical model, although the theoretical model was not able to describe measurements at elevated temperatures, where reabsorption was thought to play a decisive role. The model was derived from the optical Bloch equations and included all nearby hyperfine components, averaging over the Doppler profile, mixing of magnetic sublevels in the external magnetic field, and a treatment of the coherence properties of the exciting radiation field.Comment: 9 pages, 7 figure
    • …
    corecore