1,016 research outputs found

    Coastal iodine emissions: part 2. Chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I2

    Get PDF
    Laboratory studies into particle formation from Laminaria digitata macroalgae were undertaken to elucidate aerosol formation for a range of I2 (0.3−76 ppbv) and O3(<3−96 ppbv) mixing ratios and light levels (EPAR = 15, 100,and 235 μmol photons m−2 s−1). No clear pattern was observed for I2 or aerosol parameters as a function of light levels. Aerosol mass fluxes and particle number concentrations,were, however, correlated with I2 mixing ratios for low O3mixing ratios of <3 ppbv (R2 = 0.7 and 0.83, respectively for low light levels, and R2 = 0.95 and 0.98, respectively for medium lightlevels). Additional experiments into particle production as a function of laboratory-generated I2, over a mixing ratio range of 1−8ppbv, were conducted under moderate O3 mixing ratios (∼24 ppbv) where a clear, 100-fold or greater, increase in the aeroso lnumber concentrations and mass fluxes was observed compared to the low O3 experiments. A linear relationship between particle concentration and I2 was found, in reasonable agreement with previous studies. Scaling the laboratory relationship to aerosol concentrations typical of the coastal boundary layer suggests a I2 mixing ratio range of 6−93 pptv can account for the observed particle production events. Aerosol number concentration produced from I2 is more than a factor of 10 higher than thatproduced from CH2I2 for the same mixing ratios

    Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments

    Get PDF
    Tidally exposed macroalgae emit large amounts of I2 and iodocarbons that produce hotspots of iodine chemistry and intense particle nucleation events in the coastal marine boundary layer. Current emission rates are poorly characterized, however,with reported emission rates varying by 3 orders of magnitude. In this study, I2 emissions from 25 Laminaria digitata samples were investigated in a simulation chamber using incoherent broadbandcavity-enhanced absorption spectroscopy (IBBCEAS). The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples were exposed to air with or without O3 and to varying irradiances. Emission of I2 occurred in four distinct stages: (1) moderate emissions from partially submerged samples;(2) a strong release by fully emerged samples; (3) slowing or stopping of I2 release; and (4) later pulses of I2 evident in some samples. Emission rates were highly variable and ranged from 7to 616 pmol min−1 gFW−1 in ozone-free air, with a median value of 55 pmol min−1 gFW−1 for 20 samples

    The advanced cyberinfrastructure research and education facilitators virtual residency: Toward a national cyberinfrastructure workforce

    Get PDF
    An Advanced Cyberinfrastructure Research and Education Facilitator (ACI-REF) works directly with researchers to advance the computing- and data-intensive aspects of their research, helping them to make effective use of Cyberinfrastructure (CI). The University of Oklahoma (OU) is leading a national "virtual residency" program to prepare ACI-REFs to provide CI facilitation to the diverse populations of Science, Technology, Engineering and Mathematics (STEM) researchers that they serve. Until recently, CI Facilitators have had no education or training program; the Virtual Residency program addresses this national need by providing: (1) training, specifically (a) summer workshops and (b) third party training opportunity alerts; (2) a community of CI Facilitators, enabled by (c) a biweekly conference call and (d) a mailing list

    A General Solution to the Aircraft Trim Problem

    Get PDF
    Trim defines conditions for both design and analysis based on aircraft models. In fact, we often define these analysis points more broadly than the conditions normally associated with trim conditions to facilitate that analysis or design. In simulations, these analysis points establish initial conditions comparable to flight conditions. Based on aerodynamic and propulsion systems models of an aircraft, trim analysis can be used to provide the data needed to define the operating envelope or the performance characteristics. Linear models are typically derived at trim points. Control systems are designed and evaluated at points defined by trim conditions. And these trim conditions provide us a starting point for comparing one model against another, one implementation of a model against another implementation of the same model, and the model to flight-derived data. In this paper we define what we mean by trim, examine a variety of trim conditions that have proved useful and derive the equations defining those trim conditions. Finally we present a general approach to trim through constrained minimization of a cost function based on the nonlinear, six-degree-of freedom state equations coupled with the aerodynamic and propulsion system models. We provide an example of how a trim algorithm is used with a simulation by showing an example from JSBSim

    The seaweeds Fucus vesiculosus and Ascophyllum nodosum are significant contributors to coastal iodine emissions

    Get PDF
    Based on the results of a pilot study in 2007, which found high mixing ratios of molecular iodine (I2) above the intertidal macroalgae (seaweed) beds at Mweenish Bay (Ireland), we extended the study to nine different locations in the vicinity of Mace Head Atmospheric Research Station on the west coast of Ireland during a field campaign in 2009. The mean values of \chem{I_2} mixing ratio found above the macroalgae beds at nine different locations ranged from 104 to 393 ppt, implying a high source strength of I2. Such mixing ratios are sufficient to result in photochemically driven coastal new-particle formation events. Mixing ratios above the Ascophyllum nodosum and Fucus vesiculosus beds increased with exposure time: after 6 h exposure to ambient air the mixing ratios were one order of magnitude higher than those initially present. This contrasts with the emission characteristics of Laminaria digitata, where most I2 was emitted within the first half hour of exposure. Discrete in situ measurements (offline) of I2 emission from ambient air-exposed chamber experiments of L. digitata, A. nodosum and F. vesiculosus substantially supported the field observations. Further online and time-resolved measurements of the I2 emission from O3-exposed macroalgal experiments in a chamber confirmed the distinct I2 emission characteristics of A. nodosum and F. vesiculosus compared to those of L. digitata. The emission rates of A. nodosum and F. vesiculosus were comparable to or even higher than L. digitata after the initial exposure period of ~20–30 min. We suggest that A. nodosum and F. vesiculosus may provide an important source of photolabile iodine in the coastal boundary layer and that their impact on photochemistry and coastal new-particle formation should be reevaluated in light of their longer exposure at low tide and their widespread distribution

    Self-consistent solution of Kohn-Sham equations for infinitely extended systems with inhomogeneous electron gas

    Full text link
    The density functional approach in the Kohn-Sham approximation is widely used to study properties of many-electron systems. Due to the nonlinearity of the Kohn-Sham equations, the general self-consistence searching method involves iterations with alternate solving of the Poisson and Schr\"{o}dinger equations. One of problems of such an approach is that the charge distribution renewed by means of the Schr\"{o}dinger equation solution does not conform to boundary conditions of Poisson equation for Coulomb potential. The resulting instability or even divergence of iterations manifests itself most appreciably in the case of infinitely extended systems. The published attempts to deal with this problem are reduced in fact to abandoning the original iterative method and replacing it with some approximate calculation scheme, which is usually semi-empirical and does not permit to evaluate the extent of deviation from the exact solution. In this work, we realize the iterative scheme of solving the Kohn-Sham equations for extended systems with inhomogeneous electron gas, which is based on eliminating the long-range character of Coulomb interaction as the cause of tight coupling between charge distribution and boundary conditions. The suggested algorithm is employed to calculate energy spectrum, self-consistent potential, and electrostatic capacitance of the semi-infinite degenerate electron gas bounded by infinitely high barrier, as well as the work function and surface energy of simple metals in the jellium model. The difference between self-consistent Hartree solutions and those taking into account the exchange-correlation interaction is analyzed. The case study of the metal-semiconductor tunnel contact shows this method being applied to an infinitely extended system where the steady-state current can flow.Comment: 38 pages, 9 figures, to be published in ZhETF (J. Exp. Theor. Phys.

    Convection in colloidal suspensions with particle-concentration-dependent viscosity

    Full text link
    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal
    • …
    corecore