55 research outputs found

    Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations

    Get PDF
    Realistic 3D hazard visualizations based on advanced Geographic Information Systems (GIS) may be directly driven by hydrodynamic and wind model outputs (e.g., ADCIRC, the ADvanced CIRCulation Model) and hazard impact modeling (e.g., predicting damage to structures and infrastructure). These methods create new possibilities for representing hazard impacts and support the development of near-real-time hazard forecasting and communication tools. This paper considers the wider implications of using these storm visualizations in light of current frameworks in the context of landscape and urban planning and cartography that have addressed the use of realistic 3D visualizations. Visualizations used outside of engagement processes organized by experts risk misleading the public and may have consequences in terms of feelings of individual self-efficacy or perception of scientists behind the visualizations. In addition to summarizing the implications of using these visualizations outside of recommended practices, a research agenda is proposed to guide the development of real-time realistic and semi-realistic visualizations for future use in hazard communication. Development of a clearer use-case for real-time visualization capabilities is an essential first step if such work is to continue

    Is It Scientific? Viewer Perceptions of Storm Surge Visualizations

    Get PDF
    Scientists and coastal risk managers use semi-realistic visualizations of storm surge connected to hydrodynamic models to make projected impacts engaging and accessible. Such visualizations do not fit within established frameworks for visualizing risk because they add representational detail and may imply more certainty than exists regarding outcomes. This study explores how audiences regard these visualizations in relation to perceived representational norms for scientific graphics and visualizations. Online survey respondents (735 experts and members of the general public, primarily in Rhode Island and the northeastern United States) were asked about characteristics that make a representation “scientific.” Results demonstrate differences in norms emphasized by experts and the public, and that the persons and institutions creating the visualization may influence perceptions of legitimacy more than the style of the visualization. This may increase the potential of visualizations to be misleading and may foster perceptions that scientists are engaged in advocacy

    Developing Consequence Thresholds for Storm Models Through Participatory Processes: Case Study of Westerly Rhode Island

    Get PDF
    Emergency managers face challenges in understanding and communicating potential hurricane hazards. Preparedness typically emphasizes the last event encountered, the potential implications of future hazards may thus be underestimated. Risk assessment models (e.g., basic HAZUS) that emphasize accumulated damages in economic terms do not provide actionable data regarding specific local concerns, such as access by emergency vehicles and potential communications disruptions. Qualitative methods conventionally used to identify these concerns, however, lack the specificity necessary to incorporate the managers’ knowledge into hazard models (e.g., highly exact geographic location of the vulnerability or cascading consequences). This research develops a method to collect rich, actionable, qualitative data from critical facility managers that can be utilized in combination with hydrodynamic, wind, and precipitation models to assess potential hazard consequences. A pilot study was conducted with critical facility managers in Westerly, RI, United States, using semi-structured interviews and participatory mapping. Interview methods were based on existing practices for vulnerability assessments, and further augmented to obtain data based on hurricane modeling requirements. This research identifies challenges and recommendations when collecting critical facility manager’s knowledge for incorporation into storm simulations. The method described enables local experts to contribute actionable knowledge to natural hazard models and augment more traditional engineering-based approaches to risk assessment

    Assessing the Multiple Impacts of Extreme Hurricanes in Southern New England, USA

    Get PDF
    The southern New England coast of the United States is particularly vulnerable to land-falling hurricanes because of its east-west orientation. The impact of two major hurricanes on the city of Providence (Rhode Island, USA) during the middle decades of the 20th century spurred the construction of the Fox Point Hurricane Barrier (FPHB) to protect the city from storm surge flooding. Although the Rhode Island/Narragansett Bay area has not experienced a major hurricane for several decades, increased coastal development along with potentially increased hurricane activity associated with climate change motivates an assessment of the impacts of a major hurricane on the region. The ocean/estuary response to an extreme hurricane is simulated using a high-resolution implementation of the ADvanced CIRCulation (ADCIRC) model coupled to the Precipitation-Runoff Modeling System (PRMS). The storm surge response in ADCIRC is first verified with a simulation of a historical hurricane that made landfall in southern New England. The storm surge and the hydrological models are then forced with winds and rainfall from a hypothetical hurricane dubbed “Rhody”, which has many of the characteristics of historical storms that have impacted the region. Rhody makes landfall just west of Narragansett Bay, and after passing north of the Bay, executes a loop to the east and the south before making a second landfall. Results are presented for three versions of Rhody, varying in the maximum wind speed at landfall. The storm surge resulting from the strongest Rhody version (weak Saffir–Simpson category five) during the first landfall exceeds 7 m in height in Providence at the north end of the Bay. This exceeds the height of the FPHB, resulting in flooding in Providence. A simulation including river inflow computed from the runoff model indicates that if the Barrier remains closed and its pumps fail (for example, because of a power outage or equipment failure), severe flooding occurs north of the FPHB due to impoundment of the river inflow. These results show that northern Narragansett Bay could be particularly vulnerable to both storm surge and rainfall-driven flooding, especially if the FPHB suffers a power outage. They also demonstrate that, for wind-driven storm surge alone under present sea level conditions, the FPHB will protect Providence for hurricanes less intense than category five

    STORMTOOLS: Coastal Environmental Risk Index (CERI)

    Get PDF
    One of the challenges facing coastal zone managers and municipal planners is the development of an objective, quantitative assessment of the risk to structures, infrastructure, and public safety that coastal communities face from storm surge in the presence of changing climatic conditions, particularly sea level rise and coastal erosion. Here we use state of the art modeling tool (ADCIRC and STWAVE) to predict storm surge and wave, combined with shoreline change maps (erosion), and damage functions to construct a Coastal Environmental Risk Index (CERI). Access to the state emergency data base (E-911) provides information on structure characteristics and the ability to perform analyses for individual structures. CERI has been designed as an on line Geographic Information System (GIS) based tool, and hence is fully compatible with current flooding maps, including those from FEMA. The basic framework and associated GIS methods can be readily applied to any coastal area. The approach can be used by local and state planners to objectively evaluate different policy options for effectiveness and cost/benefit. In this study, CERI is applied to RI two communities; Charlestown representing a typical coastal barrier system directly exposed to ocean waves and high erosion rates, with predominantly low density single family residences and Warwick located within Narragansett Bay, with more limited wave exposure, lower erosion rates, and higher residential housing density. Results of these applications are highlighted herein

    Challenges to climate change adaptation in coastal small towns:Examples from Ghana, Uruguay, Finland, Denmark, and Alaska

    Get PDF
    The ability of a coastal settlement to adapt to climate change is largely dependent upon access to a range of resources, which many coastal towns and small cities lack. Coastal small towns of less than 10,000 are therefore at a significant disadvantage compared to larger settlements when it comes to adaptation. One way to begin to overcome this disadvantage is to compare coastal small towns in order to identify efficiencies and support knowledge sharing. In this article we present and analyse five case studies of coastal small towns: Fuvemeh, Ghana; Kiyú, Uruguay; Hanko, Finland; Lemvig, Denmark; and Nome, Alaska, USA. A number of key outcomes and lessons were identified which highlights the need for a formal network of international coastal small towns to encourage and develop knowledge sharing practices going forward. A further lesson is the importance of using a range of indicators in order to establish the regional/national importance of a town. Basing this solely on population size can result in an erroneous interpretation of the significance (and therefore adaptive capacity) of a coastal small town. Finally, despite many barriers to adaptation in coastal small towns, being small offers some potential advantages, such as the possibility of being able to form a community consensus more easily, using 3D visualisations for adaptation planning, and having managed realignment as a realistic management option. It is imperative that climate change resilience in coastal small towns is increased by focussing on overcoming barriers and developing appropriate adaptation approaches by governments, non-governmental organisations, business, and researchers

    Challenges to climate change adaptation in coastal small towns: examples from Ghana, Uruguay, Finland, Denmark, and Alaska

    Get PDF
    The ability of a coastal settlement to adapt to climate change is largely dependent upon access to a range of resources, which many coastal towns and small cities lack. Coastal small towns of less than 10,000 are therefore at a significant disadvantage compared to larger settlements when it comes to adaptation. One way to begin to overcome this disadvantage is to compare coastal small towns in order to identify efficiencies and support knowledge sharing. In this article we present and analyse five case studies of coastal small towns: Fuvemeh, Ghana; Kiyú, Uruguay; Hanko, Finland; Lemvig, Denmark; and Nome, Alaska, USA. A number of key outcomes and lessons were identified which highlights the need for a formal network of international coastal small towns to encourage and develop knowledge sharing practices going forward. A further lesson is the importance of using a range of indicators in order to establish the regional/national importance of a town. Basing this solely on population size can result in an erroneous interpretation of the significance (and therefore adaptive capacity) of a coastal small town. Finally, despite many barriers to adaptation in coastal small towns, being small offers some potential advantages, such as the possibility of being able to form a community consensus more easily, using 3D visualisations for adaptation planning, and having managed realignment as a realistic management option. It is imperative that climate change resilience in coastal small towns is increased by focussing on overcoming barriers and developing appropriate adaptation approaches by governments, non-governmental organisations, business, and researchers
    corecore