672 research outputs found

    Point group symmetry of cadmium arsenide thin films determined by convergent beam electron diffraction

    Get PDF
    Cadmium arsenide (Cd3As2) is one of the first materials to be discovered to belong to the class of three-dimensional topological semimetals. Reported room temperature crystal structures of Cd3As2 reported differ subtly in the way the Cd vacancies are arranged within its antifluorite-derived structure, which determines if an inversion center is present and if Cd3As2 is a Dirac or Weyl semimetal. Here, we apply convergent beam electron diffraction (CBED) to determine the point group of Cd3As2 thin films grown by molecular beam epitaxy. Using CBED patterns from multiple zone axes, high-angle annular dark-field images acquired in scanning transmission electron microscopy, and Bloch wave simulations, we show that Cd3As2 belongs to the tetragonal 4/mmm point group, which is centrosymmetric. The results show that CBED can distinguish very subtle differences in the crystal structure of a topological semimetal, a capability that will be useful for designing materials and thin film heterostructures with topological states that depend on the presence of certain crystal symmetries.Comment: Accepted for publication in Physical Review Material

    A Large Effective Phonon Magnetic Moment in a Dirac Semimetal

    Full text link
    We investigated the magnetoterahertz response of the Dirac semimetal Cd3_3As2_2 and observed a particularly low frequency optical phonon, as well as a very prominent and field sensitive cyclotron resonance. As the cyclotron frequency is tuned with field to pass through the phonon, the phonon become circularly polarized as shown by a notable splitting in their response to right- and left-hand polarized light. This splitting can be expressed as an effective phonon magnetic moment that is approximately 2.7 times the Bohr magneton, which is almost four orders of magnitude larger than ab initio calculations predict for phonon magnetic moments in nonmagnetic insulators. This exceedingly large value is due to the coupling of the phonons to the cyclotron motion and is controlled directly by the electron-phonon coupling constant. This field tunable circular-polarization selective coupling provides new functionality for nonlinear optics to create light-induced topological phases in Dirac semimetals.Comment: 15 pages for main text and SI; To appear in Nano Letters (2020

    Analytical study of the effect of recombination on evolution via DNA shuffling

    Full text link
    We investigate a multi-locus evolutionary model which is based on the DNA shuffling protocol widely applied in \textit{in vitro} directed evolution. This model incorporates selection, recombination and point mutations. The simplicity of the model allows us to obtain a full analytical treatment of both its dynamical and equilibrium properties, for the case of an infinite population. We also briefly discuss finite population size corrections

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    La-doped SrTiO 3

    Full text link
    • …
    corecore