15 research outputs found

    The crosstalk between microbial sensors ELMO1 and NOD2 shape intestinal immune responses

    No full text
    ABSTRACTMicrobial sensors play an essential role in maintaining cellular homoeostasis. Our knowledge is limited on how microbial sensing helps in differential immune response and its link to inflammatory diseases. Recently we have confirmed that ELMO1 (Engulfment and Cell Motility Protein-1) present in cytosol is involved in pathogen sensing, engulfment, and intestinal inflammation. Here, we show that ELMO1 interacts with another sensor, NOD2 (Nucleotide-binding oligomerization domain-containing protein 2), that recognizes bacterial cell wall component muramyl dipeptide (MDP). The polymorphism of NOD2 is linked to Crohn’s disease (CD) pathogenesis. Interestingly, we found that overexpression of ELMO1 and mutant NOD2 (L1007fs) were not able to clear the CD-associated adherent invasive E. coli (AIEC-LF82). The functional implications of ELMO1-NOD2 interaction in epithelial cells were evaluated by using enteroid-derived monolayers (EDMs) from ELMO1 and NOD2 KO mice. Subsequently we also assessed the immune response in J774 macrophages depleted of either ELMO1 or NOD2 or both. The infection of murine EDMs with AIEC-LF82 showed higher bacterial load in ELMO1-KO, NOD2 KO EDMs, and ELMO1 KO EDMs treated with NOD2 inhibitors. The murine macrophage cells showed that the downregulation of ELMO1 and NOD2 is associated with impaired bacterial clearance that is linked to reduce pro-inflammatory cytokines and reactive oxygen species. Our results indicated that the crosstalk between microbial sensors in enteric infection and inflammatory diseases impacts the fate of the bacterial load and disease pathogenesis

    The Hague, International City - UN City- City of Peace and International Justice: Onward to 2015!

    No full text
    E-cigarette usage continues to rise, yet the safety of e-cigarette aerosols is questioned. Using murine models of acute and chronic e-cigarette aerosol inhalation, murine colon transcriptomics, and murine and human gut-derived organoids in co-culture models, we assessed the effects of e-cigarette use on the gut barrier. Histologic and transcriptome analyses revealed that chronic, but not acute, nicotine-free e-cigarette use increased inflammation and reduced expression of tight junction (TJ) markers. Exposure of murine and human enteroid-derived monolayers (EDMs) to nicotine-free e-cigarette aerosols alone or in co-culture with bacteria also causes barrier disruption, downregulation of TJ protein, and enhanced inflammation in response to infection. These data highlight the harmful effects of "non-nicotine" component of e-cigarettes on the gut barrier. Considering the importance of an intact gut barrier for host fitness and the impact of gut mucosal inflammation on a multitude of chronic diseases, these findings are broadly relevant to both medicine and public health
    corecore