7 research outputs found

    Optimization of femtosecond laser processing in liquids

    Full text link
    In this paper we analyze femtosecond laser processing of metals in liquids searching for optimal conditions for predictable ablation. Incident laser pulses are stretched or compressed, self-focused and scattered on bubbles and on surface waves in the liquid environment. Influence of these effects on the laser intensity distribution on the target surface is discussed and optimal processing parameters are suggested

    Impact of Pre-Patterned Structures on Features of Laser-Induced Periodic Surface Structures

    No full text
    The efficiency of light coupling to surface plasmon polariton (SPP) represents a very important issue in plasmonics and laser fabrication of topographies in various solids. To illustrate the role of pre-patterned surfaces and impact of laser polarisation in the excitation of electromagnetic modes and periodic pattern formation, Nickel surfaces are irradiated with femtosecond laser pulses of polarisation perpendicular or parallel to the orientation of the pre-pattern ridges. Experimental results indicate that for polarisation parallel to the ridges, laser induced periodic surface structures (LIPSS) are formed perpendicularly to the pre-pattern with a frequency that is independent of the distance between the ridges and periodicities close to the wavelength of the excited SPP. By contrast, for polarisation perpendicular to the pre-pattern, the periodicities of the LIPSS are closely correlated to the distance between the ridges for pre-pattern distance larger than the laser wavelength. The experimental observations are interpreted through a multi-scale physical model in which the impact of the interference of the electromagnetic modes is revealed

    Influence of defects on structural colours generated by laser-induced ripples

    No full text
    The colourisation of metallic surface which appears due to periodic surface patterns induced by ultrashort laser pulses is studied. Ripples due to the sub-micrometer size of their period act as a diffraction grating, generating structural colours. Carefully chosen strategy of the laser spot scanning allows us to mimic the nanostructures responsible for structural colours of some flowers on the metal substrate. We investigate the correlation between the colourising effects and the artificially-induced defects in the ripples structure and show that these defects can make the colours observable in a larger range of viewing angles. Further we address the influence of the processing parameters on the spectral profile of the reflected light
    corecore