16 research outputs found

    The PanCareSurFup consortium:research and guidelines to improve lives for survivors of childhood cancer

    Get PDF
    Background: Second malignant neoplasms and cardiotoxicity are among the most serious and frequent adverse health outcomes experienced by childhood and adolescent cancer survivors (CCSs) and contribute significantly to their increased risk of premature mortality. Owing to differences in health-care systems, language and culture across the continent, Europe has had limited success in establishing multi-country collaborations needed to assemble the numbers of survivors required to clarify the health issues arising after successful cancer treatment. PanCareSurFup (PCSF) is the first pan-European project to evaluate some of the serious long-term health risks faced by survivors. This article sets out the overall rationale, methods and preliminary results of PCSF. Methods: The PCSF consortium pooled data from 13 cancer registries and hospitals in 12 European countries to evaluate subsequent primary malignancies, cardiac disease and late mortality in survivors diagnosed between ages 0 and 20 years. In addition, PCSF integrated radiation dosimetry to sites of second malignancies and to the heart, developed evidence-based guidelines for long-term care and for transition services, and disseminated results to survivors and the public. Results: We identified 115,596 individuals diagnosed with cancer, of whom 83,333 were 5-year survivors and diagnosed from 1940 to 2011. This single data set forms the basis for cohort analyses of subsequent malignancies, cardiac disease and late mortality and case–control studies of subsequent malignancies and cardiac disease in 5-year survivors. Conclusions: PCSF delivered specific estimates of risk and comprehensive guidelines to help survivors and care-givers. The expected benefit is to provide every European CCS with improved access to care and better long-term health

    Sustainable care for children with cancer: a Lancet Oncology Commission.

    Get PDF
    We estimate that there will be 13·7 million new cases of childhood cancer globally between 2020 and 2050. At current levels of health system performance (including access and referral), 6·1 million (44·9%) of these children will be undiagnosed. Between 2020 and 2050, 11·1 million children will die from cancer if no additional investments are made to improve access to health-care services or childhood cancer treatment. Of this total, 9·3 million children (84·1%) will be in low-income and lower-middle-income countries. This burden could be vastly reduced with new funding to scale up cost-effective interventions. Simultaneous comprehensive scale-up of interventions could avert 6·2 million deaths in children with cancer in this period, more than half (56·1%) of the total number of deaths otherwise projected. Taking excess mortality risk into consideration, this reduction in the number of deaths is projected to produce a gain of 318 million life-years. In addition, the global lifetime productivity gains of US2580billionin202050wouldbefourtimesgreaterthanthecumulativetreatmentcostsof2580 billion in 2020-50 would be four times greater than the cumulative treatment costs of 594 billion, producing a net benefit of 1986billionontheglobalinvestment:anetreturnof1986 billion on the global investment: a net return of 3 for every $1 invested. In sum, the burden of childhood cancer, which has been grossly underestimated in the past, can be effectively diminished to realise massive health and economic benefits and to avert millions of needless deaths

    International incidence of childhood cancer, 2001-10: A population-based registry study

    Get PDF

    Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study

    Get PDF
    Background: A deceleration in the increase in cancer incidence in children and adolescents has been reported in several national and regional studies in Europe. Based on a large database representing 1·3 billion person-years over the period 1991–2010, we provide a consolidated report on cancer incidence trends at ages 0–19 years. Methods: We invited all population-based cancer registries operating in European countries to participate in this population-based registry study. We requested a listing of individual records of cancer cases, including sex, age, date of birth, date of cancer diagnosis, tumour sequence number, primary site, morphology, behaviour, and the most valid basis of diagnosis. We also requested population counts in each calendar year by sex and age for the registration area, from official national sources, and specific information about the covered area and registration practices. An eligible registry could become a contributor if it provided quality data for all complete calendar years in the period 1991–2010. Incidence rates and the average annual percentage change with 95% CIs were reported for all cancers and major diagnostic groups, by region and overall, separately for children (age 0–14 years) and adolescents (age 15–19 years). We examined and quantified the stability of the trends with joinpoint analyses. Findings: For the years 1991–2010, 53 registries in 19 countries contributed a total of 180 335 unique cases. We excluded 15 162 (8·4%) of 180 335 cases due to differing practices of registration, and considered the quality indicators for the 165 173 cases included to be satisfactory. The average annual age-standardised incidence was 137·5 (95% CI 136·7–138·3) per million person-years and incidence increased significantly by 0·54% (0·44–0·65) per year in children (age 0–14 years) with no change in trend. In adolescents, the combined European incidence was 176·2 (174·4–178·0) per million person-years based on all 35 138 eligible cases and increased significantly by 0·96% (0·73–1·19) per year, although recent changes in rates among adolescents suggest a deceleration in this increasing trend. We observed temporal variations in trends by age group, geographical region, and diagnostic group. The combined age-standardised incidence of leukaemia based on 48 458 cases in children was 46·9 (46·5–47·3) per million person-years and increased significantly by 0·66% (0·48–0·84) per year. The average overall incidence of leukaemia in adolescents was 23·6 (22·9–24·3) per million person-years, based on 4702 cases, and the average annual change was 0·93% (0·49–1·37). We also observed increasing incidence of lymphoma in adolescents (average annual change 1·04% [0·65–1·44], malignant CNS tumours in children (average annual change 0·49% [0·20–0·77]), and other tumours in both children (average annual change 0·56 [0·40–0·72]) and adolescents (average annual change 1·17 [0·82–1·53]). Interpretation: Improvements in the diagnosis and registration of cancers over time could partly explain the observed increase in incidence, although some changes in underlying putative risk factors cannot be excluded. Cancer incidence trends in this young population require continued monitoring at an international level. Funding: Federal Ministry of Health of the Federal German Government, the European Union's Seventh Framework Programme, and International Agency for Research on Cancer

    Impact of era of diagnosis on cause-specific late mortality among 77 423 five-year European survivors of childhood and adolescent cancer: the PanCareSurFup consortium.

    No full text
    Late mortality of European five-year survivors of childhood or adolescent cancer has dropped over the last 60 years, but excess mortality persists. There is little information concerning secular trends in cause-specific mortality among older European survivors. PanCareSurFup pooled data from 12 cancer registries and clinics in 11 European countries from 77 423 five-year survivors of cancer diagnosed before age 21 between 1940 to 2008 followed for an average age of 21 years and a total of 1.27 million person-years to determine their risk of death using cumulative mortality, standardized mortality ratios (SMR), absolute excess risks (AER), and multivariable proportional hazards regression analyses. At the end of follow-up 9166 survivors (11.8%) had died compared to 927 expected (SMR 9.89, 95% confidence interval [95%CI] 9.69-10.09), AER 6.47 per 1000 person-years, (95%CI 6.32-6.62). At 60-68 years of attained age all-cause mortality was still higher than expected (SMR = 2.41, 95%CI 1.90-3.02). Overall cumulative mortality at 25 years from diagnosis dropped from 18.4% (95%CI 16.5-20.4) to 7.3% (95%CI 6.7-8.0) over the observation period. Compared to the diagnosis period 1960-69, the mortality hazard ratio declined for first neoplasms (p for trend <0.0001) and for infections (P < 0.0001); declines in relative mortality from second neoplasms and cardiovascular causes were less pronounced (P = 0.1105 and P = 0.0829, respectively). PanCareSurFup is the largest study with the longest follow-up of late mortality among European childhood and adolescent cancer five-year survivors, and documents significant mortality declines among European survivors into modern eras. However, continuing excess mortality highlights survivors' long-term care needs. This article is protected by copyright. All rights reserved

    Impact of era of diagnosis on cause-specific late mortality among 77 423 five-year European survivors of childhood and adolescent cancer: The PanCareSurFup consortium

    No full text
    Late mortality of European 5-year survivors of childhood or adolescent cancer has dropped over the last 60 years, but excess mortality persists. There is little information concerning secular trends in cause-specific mortality among older European survivors. PanCareSurFup pooled data from 12 cancer registries and clinics in 11 European countries from 77 423 five-year survivors of cancer diagnosed before age 21 between 1940 and 2008 followed for an average age of 21 years and a total of 1.27 million person-years to determine their risk of death using cumulative mortality, standardized mortality ratios (SMR), absolute excess risks (AER), and multivariable proportional hazards regression analyses. At the end of follow-up 9166 survivors (11.8%) had died compared to 927 expected (SMR 9.89, 95% confidence interval [95% CI] 9.69-10.09), AER 6.47 per 1000 person-years, (95% CI 6.32-6.62). At 60 to 68 years of attained age all-cause mortality was still higher than expected (SMR = 2.41, 95% CI 1.90-3.02). Overall cumulative mortality at 25 years from diagnosis dropped from 18.4% (95% CI 16.5-20.4) to 7.3% (95% CI 6.7-8.0) over the observation period. Compared to the diagnosis period 1960 to 1969, the mortality hazard ratio declined for first neoplasms (P for trend <.0001) and for infections (P <.0001); declines in relative mortality from second neoplasms and cardiovascular causes were less pronounced (P =.1105 and P =.0829, respectively). PanCareSurFup is the largest study with the longest follow-up of late mortality among European childhood and adolescent cancer 5-year survivors, and documents significant mortality declines among European survivors into modern eras. However, continuing excess mortality highlights survivors' long-term care needs

    Sustainable care for children with cancer: a Lancet Oncology Commission

    No full text
    We estimate that there will be 13·7 million new cases of childhood cancer globally between 2020 and 2050. At current levels of health system performance (including access and referral), 6·1 million (44·9%) of these children will be undiagnosed. Between 2020 and 2050, 11·1 million children will die from cancer if no additional investments are made to improve access to health-care services or childhood cancer treatment. Of this total, 9·3 million children (84·1%) will be in low-income and lower-middle-income countries. This burden could be vastly reduced with new funding to scale up cost-effective interventions. Simultaneous comprehensive scale-up of interventions could avert 6·2 million deaths in children with cancer in this period, more than half (56·1%) of the total number of deaths otherwise projected. Taking excess mortality risk into consideration, this reduction in the number of deaths is projected to produce a gain of 318 million life-years. In addition, the global lifetime productivity gains of US2580billionin202050wouldbefourtimesgreaterthanthecumulativetreatmentcostsof2580 billion in 2020–50 would be four times greater than the cumulative treatment costs of 594 billion, producing a net benefit of 1986billionontheglobalinvestment:anetreturnof1986 billion on the global investment: a net return of 3 for every $1 invested. In sum, the burden of childhood cancer, which has been grossly underestimated in the past, can be effectively diminished to realise massive health and economic benefits and to avert millions of needless deaths

    Sustainable care for children with cancer: a Lancet Oncology Commission

    No full text
    We estimate that there will be 13.7 million new cases of childhood cancer globally between 2020 and 2050. At current levels of health system performance (including access and referral), 6.1 million (44.9%) of these children will be undiagnosed. Between 2020 and 2050, 11.1 million children will die from cancer if no additional investments are made to improve access to health-care services or childhood cancer treatment. Of this total, 9.3 million children (84.1%) will be in low-income and lower-middle-income countries. This burden could be vastly reduced with new funding to scale up cost-effective interventions. Simultaneous comprehensive scale-up of interventions could avert 6.2 million deaths in children with cancer in this period, more than half (56.1%) of the total number of deaths otherwise projected. Taking excess mortality risk into consideration, this reduction in the number of deaths is projected to produce a gain of 318 million life-years. In addition, the global lifetime productivity gains of US2580billionin202050wouldbefourtimesgreaterthanthecumulativetreatmentcostsof2580 billion in 2020-50 would be four times greater than the cumulative treatment costs of 594 billion, producing a net benefit of 1986billionontheglobalinvestment:anetreturnof1986 billion on the global investment: a net return of 3 for every $1 invested. In sum, the burden of childhood cancer, which has been grossly underestimated in the past, can be effectively diminished to realise massive health and economic benefits and to avert millions of needless deaths
    corecore