34 research outputs found

    Introducing the brain erythropoietin circle to explain adaptive brain hardware upgrade and improved performance

    Get PDF
    Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The ‘brain hardware upgrade’, underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive ‘brain hardware upgrade’ and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motorcognitive tasks, drift into transient ‘functional hypoxia’, thereby triggering neuronal EPO/EPOR expression

    Preadult polytoxicomania—strong environmental underpinnings and first genetic hints

    Get PDF
    Considering the immense societal and personal costs and suffering associated with multiple drug use or “polytoxicomania”, better understanding of environmental and genetic causes is crucial. While previous studies focused on single risk factors and selected drugs, effects of early-accumulated environmental risks on polytoxicomania were never addressed. Similarly, evidence of genetic susceptibility to particular drugs is abundant, while genetic predisposition to polytoxicomania is unexplored. We exploited the GRAS data collection, comprising information on N~2000 deep-phenotyped schizophrenia patients, to investigate effects of early-life environmental risk accumulation on polytoxicomania and additionally provide first genetic insight. Preadult accumulation of environmental risks (physical or sexual abuse, urbanicity, migration, cannabis, alcohol) was strongly associated with lifetime polytoxicomania (p  = 1.5 × 10−45; OR = 31.4), preadult polytoxicomania with OR = 226.6 (p = 1.0 × 10−33) and adult polytoxicomania with OR = 17.5 (p = 3.4 × 10−24). Parallel accessibility of genetic data from GRAS patients and N~2100 controls for genome-wide association (GWAS) and phenotype-based genetic association studies (PGAS) permitted the creation of a novel multiple GWAS–PGAS approach. This approach yielded 41 intuitively interesting SNPs, potentially conferring liability to preadult polytoxicomania, which await replication upon availability of suitable deep-phenotyped cohorts anywhere world-wide. Concisely, juvenile environmental risk accumulation, including cannabis and alcohol as starter/gateway drugs, strongly predicts polytoxicomania during adolescence and adulthood. This pivotal message should launch more effective sociopolitical measures to prevent this deleterious psychiatric condition

    Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis

    Get PDF
    The etiology and pathogenesis of “anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis” and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that “NMDAR encephalitis” results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a “cocktail” of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons (“DTA” mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven

    NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance

    Get PDF
    Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that “autoimmune encephalitides” may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp−/− mice lacking the structural myelin protein 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp) with a “cocktail” of NMDAR1 peptides. Cnp−/− mice exhibit early low-grade inflammation of white matter tracts and blood–brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp−/− mice are compromised in what–where–when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp−/− mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp−/−. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp−/− mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions

    Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus

    Get PDF
    In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons, independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardware upgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience ‘‘functional’’ hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, we show an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation, either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinant human (rh)EPO or exposure to hypoxia recapitulates these changes and reveals the involvement of neuronally expressed IL-34 and microglial CSF1R. Surprisingly, EPO affects microglia in phases, initially by inducing apoptosis, later by reducing proliferation, and overall dampens microglia activity and metabolism, as verified by selective genetic targeting of either the microglial or pyramidal neuronal EPO receptor. We suggest that during accelerating neuronal differentiation, EPO acts as regulator of the CSF1R-dependent microglia

    Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease

    Get PDF
    The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths(1), the latter of which is associated with secondary neuroinflammation(2,3). As oligodendrocytes support axonal energy metabolism and neuronal health(4-7), we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-beta (A beta) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the A beta-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote A beta plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD

    Sex-Dependent Shared and Non-Shared Genetic Architecture Across Mood and Psychotic Disorders

    Get PDF
    BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. / METHODS: We conducted the largest to date genome-wide genotype–by–sex (GxS) interaction of risk for these disorders, using 85,735 cases (33,403 SCZ, 19,924 BIP, 32,408 MDD) and 109,946 controls from the Psychiatric Genomics Consortium (PGC) and iPSYCH. / RESULTS: Across disorders, genome-wide significant SNP-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815; p=3.2×10−8), that interacts with sodium/potassium-transporting ATPase enzymes implicating neuronal excitability. Three additional loci showed evidence (p<1×10−6) for cross-disorder GxS interaction (rs7302529, p=1.6×10−7; rs73033497, p=8.8×10−7; rs7914279, p=6.4×10−7) implicating various functions. Gene-based analyses identified GxS interaction across disorders (p=8.97×10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282; p=1.5×10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509; p=1.1×10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant GxS of genes regulating vascular endothelial growth factor (VEGF) receptor signaling in MDD (pFDR<0.05). / CONCLUSIONS: In the largest genome-wide GxS analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development, immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway enrichment levels

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Spontaneous serum autoantibody fluctuations: To be or not to be

    No full text
    corecore