17 research outputs found

    Study of alternate optical and fine guidance sensor designs for the space infrared telescope facility (SIRTF)

    Get PDF
    A unique optical design was developed that compensates for the coma degraded images caused by field chopping in SIRTF. The conic constants of a Cassegrain telescope were altered to compensate for the coma induced by the secondary mirror tilt. The modulation transfer function is essentially independent of secondary mirror tilt, and diffraction limited image quality is maintained over a several arcminute field during chopping. With an untilted secondary mirror, the coma compensated (CC) design has a smaller field than the unchopped Ritchey-Chretien design; but use of relay optics, such as the inverted Cassegrain design developed for the fine guidance sensor (FGS), can increase the CC telescope's field size. A reactionless secondary mirror chopper mechanism that uses superconducting magnets was studied. The heart producing elements are confined to a reaction plate that is not directly viewed by the IR focal plane. A design was also developed for a low moment of inertia, reticulated HIP beryllium secondary mirror consistent with blank fabrication technology and optical finishing requirements
    corecore