9 research outputs found

    Skeletal muscle redox signaling in rheumatoid arthritis

    No full text
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and the presence of serum autoantibodies. In addition, skeletal muscle weakness is a common comorbidity that contributes to inability to work and reduced quality of life. Loss in muscle mass cannot alone account for the muscle weakness induced by RA, but instead intramuscular dysfunction appears as a critical factor underlying the decreased force generating capacity for patients afflicted by arthritis. Oxidative stress and associated oxidative post-translational modifications have been shown to contribute to RA-induced muscle weakness in animal models of arthritis and patients with RA. However, it is still unclear how and which sources of reactive oxygen and nitrogen species (ROS/RNS) that are involved in the oxidative stress that drives the progression toward decreased muscle function in RA. Nevertheless, mitochondria, NADPH oxidases (NOX), nitric oxide synthases (NOS) and phospholipases (PLA) have all been associated with increased ROS/RNS production in RA-induced muscle weakness. In this review, we aim to cover potential ROS sources and underlying mechanisms of oxidative stress and loss of force production in RA. We also addressed the use of antioxidants and exercise as potential tools to counteract oxidative stress and skeletal muscle weakness

    Muscle Weakness in Rheumatoid Arthritis: The Role of Ca2+ and Free Radical Signaling

    No full text
    In addition to the primary symptoms arising from inflammatory processes in the joints, muscle weakness is commonly reported by patients with rheumatoid arthritis (RA). Muscle weakness not only reduces the quality of life for the affected patients, but also dramatically increases the burden on society since patients' work ability decreases. A 25–70% reduction in muscular strength has been observed in pateints with RA when compared with age-matched healthy controls. The reduction in muscle strength is often larger than what could be explained by the reduction in muscle size in patients with RA, which indicates that intracellular (intrinsic) muscle dysfunction plays an important role in the underlying mechanism of muscle weakness associated with RA. In this review, we highlight the present understanding of RA-associated muscle weakness with special focus on how enhanced Ca2+ release from the ryanodine receptor and free radicals (reactive oxygen/nitrogen species) contributes to muscle weakness, and recent developments of novel therapeutic interventions

    Update on imaging of Inflammatory Arthritis and Related Disorders

    No full text
    Arthritis and other rheumatic disorders are very frequent in the general population and responsible for a huge physical and disability burden to affected patients as well as a major cost to the society. Precise evaluation often relies on clinical data only but additional imaging may be required i) for a more objective assessment of the disease status, such as in rheumatoid arthritis (RA) or ankylosing spondyloarthritis (AS), ii) for providing prognostic information and evaluating response to treatment or iii) for establishing diagnosis, in patients with unclear clinical picture, such as polymyalgia rheumatica (PMR) and large-vessel vasculitis (LVV). Besides radiological techniques (x-rays, ultrasound, and MRI), functional and molecular imaging has emerged as a valid tool for this purpose in several disorders. Bone scanning has long been a method of choice but is now more used as a triage tool in patients with unclear complaints, including degenerative disorders (eg osteoarthritis). 18F-FDG-PET/CT (FDG) proved efficient in assessing the extent of the disease and response to treatment in RA and related disorders, and to provide accurate diagnosis in some systemic disorders, including PMR and LVV. Based on glucose metabolism, FDG-PET/CT is able to show increased metabolism in peripheral cells involved in inflammation (eg neutrophils, lymphocytes or monocytes/macrophages) but also in fibroblasts that proliferate in the pannus. The lack of specificity of FDG is a limitation and many alternative tracers were developed at the preclinical stage or applied in the clinics, especially within clinical trials. They include imaging of macrophages using translocator protein (TSPO), folate-receptors or other targets on activated cells. These new tools will undoubtedly become more and more available in the everyday clinical workup of patients with rheumatisms. Finally, it should be kept in mind that a very simple tracer, 18F-fluoride is widely more performant in AS than FDG

    Update on imaging of Inflammatory Arthritis and Related Disorders

    Get PDF
    Arthritis and other rheumatic disorders are very frequent in the general population and responsible for a huge physical and disability burden to affected patients as well as a major cost to the society. Precise evaluation often relies on clinical data only but additional imaging may be required i) for a more objective assessment of the disease status, such as in rheumatoid arthritis (RA) or ankylosing spondyloarthritis (AS), ii) for providing prognostic information and evaluating response to treatment or iii) for establishing diagnosis, in patients with unclear clinical picture, such as polymyalgia rheumatica (PMR) and large-vessel vasculitis (LVV). Besides radiological techniques (x-rays, ultrasound, and MRI), functional and molecular imaging has emerged as a valid tool for this purpose in several disorders. Bone scanning has long been a method of choice but is now more used as a triage tool in patients with unclear complaints, including degenerative disorders (eg osteoarthritis). 18F-FDG-PET/CT (FDG) proved efficient in assessing the extent of the disease and response to treatment in RA and related disorders, and to provide accurate diagnosis in some systemic disorders, including PMR and LVV. Based on glucose metabolism, FDG-PET/CT is able to show increased metabolism in peripheral cells involved in inflammation (eg neutrophils, lymphocytes or monocytes/macrophages) but also in fibroblasts that proliferate in the pannus. The lack of specificity of FDG is a limitation and many alternative tracers were developed at the preclinical stage or applied in the clinics, especially within clinical trials. They include imaging of macrophages using translocator protein (TSPO), folate-receptors or other targets on activated cells. These new tools will undoubtedly become more and more available in the everyday clinical workup of patients with rheumatisms. Finally, it should be kept in mind that a very simple tracer, 18F-fluoride is widely more performant in AS than FDG

    Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis

    No full text
    Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA

    Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis

    No full text
    Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA

    Folate Receptor Beta for Macrophage Imaging in Rheumatoid Arthritis

    No full text
    Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor β (FRβ), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRβ, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA

    Folate Receptor Beta for Macrophage Imaging in Rheumatoid Arthritis

    No full text
    Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor β (FRβ), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRβ, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA
    corecore