408 research outputs found

    Mechanism of thermally activated c-axis dissipation in layered High-Tc_c superconductors at high fields

    Full text link
    We propose a simple model which explains experimental behavior of cc-axis resistivity in layered High-Tc_c superconductors at high fields in a limited temperature range. It is generally accepted that the in-plane dissipation at low temperatures is caused by small concentration of mobile pancake vortices whose diffusive motion is thermally activated. We demonstrate that in such situation a finite conductivity appears also in cc-direction due to the phase slips between the planes caused by the mobile pancakes. The model gives universal relation between the components of conductivity which is in good agreement with experimental data.Comment: RevTeX, 4 pages, 2 Postscript figure

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network

    220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    Full text link
    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date

    Penetration of Josephson vortices and measurement of the c-axis penetration depth in Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}: Interplay of Josephson coupling, surface barrier and defects

    Full text link
    The first penetration field H_{J}(T) of Josephson vortices is measured through the onset of microwave absorption in the locked state, in slightly overdoped Bi2Sr2CaCu2O8+δ\rm{Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}} single crystals (T_{c} ~ 84 K). The magnitude of H_{J}(T) is too large to be accounted for by the first thermodynamic critical field H_{c1}(T). We discuss the possibility of a Bean-Livingston barrier, also supported by irreversible behavior upon flux exit, and the role of defects, which relates H_{J}(T) to the c-axis penetration depth λc(T)\lambda_{c}(T). The temperature dependence of the latter, determined by a cavity perturbation technique and a theoretical estimate of the defect-limited penetration field are used to deduce from H_{J}(T) the absolute value of λc(0)=(35±15)μm\lambda_{c}(0)=(35 \pm 15) \mu m.Comment: 9 pages, 6 figure

    High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    Get PDF
    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500  s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event. © 2016 The American Physical Societ

    Graphene Mode-Locked Ultrafast Laser

    Full text link
    Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro and nanomechanical systems, thin-film transistors and transparent and conductive composites and electrodes. Here we exploit the optoelectronic properties of graphene to realize an ultrafast laser. A graphene-polymer composite is fabricated using wet-chemistry techniques. Pauli blocking following intense illumination results in saturable absorption, independent of wavelength. This is used to passively mode-lock an Erbium-doped fibre laser working at 1559nm, with a 5.24nm spectral bandwidth and ~460fs pulse duration, paving the way to graphene-based photonics

    Whole body vibration compared to conventional physiotherapy in patients with gonarthrosis: a protocol for a randomized, controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is the most common degenerative arthropathy. Load-bearing joints such as knee and hip are more often affected than spine or hands. The prevalence of gonarthrosis is generally higher than that of coxarthrosis.</p> <p>Because no cure for OA exists, the main emphasis of therapy is analgesic treatment through either mobility or medication. Non-pharmacologic treatment is the first step, followed by the addition of analgesic medication, and ultimately by surgery.</p> <p>The goal of non-pharmacologic and non-invasive therapy is to improve neuromuscular function, which in turn both prevents formation of and delays progression of OA. A modification of conventional physiotherapy, whole body vibration has been successfully employed for several years. Since its introduction, this therapy is in wide use at our facility not only for gonarthrosis, but also coxarthrosis and other diseases leading to muscular imbalance.</p> <p>Methods/Design</p> <p>This study is a randomized, therapy-controlled trial in a primary care setting at a university hospital. Patients presenting to our outpatient clinic with initial symptoms of gonarthrosis will be assessed against inclusion and exclusion criteria. After patient consent, 6 weeks of treatment will ensue. During the six weeks of treatment, patients will receive one of two treatments, conventional physiotherapy or whole-body-vibration exercises of one hour three times a week. Follow-up examinations will be performed immediately after treatment and after another 6 and 20 weeks, for a total study duration of 6 months. 20 patients will be included in each therapy group.</p> <p>Outcome measurements will include objective analysis of motion and ambulation as well as examinations of balance and isokinetic force. The Western Ontario and McMaster Universities Arthritis Index and SF-12 scores, the patients' overall status, and clinical examinations of the affected joint will be carried out.</p> <p>Discussion</p> <p>As new physiotherapy techniques develop for the treatment of OA, it is important to investigate the effectiveness of competing strategies. With this study, not only patient-based scores, but also objective assessments will be used to quantify patient-derived benefits of therapy.</p> <p>Trial registration</p> <p>Deutsches Register Klinischer Studien (DRKS) DRKS00000415</p> <p>Clinicaltrials.gov NCT01037972</p> <p>EudraCT 2009-017617-29</p

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    corecore