4 research outputs found

    Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs

    Get PDF

    Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs

    No full text
    Does competition affect moral behavior? This fundamental question has been debated among leading scholars for centuries, and more recently, it has been tested in experimental studies yielding a body of rather inconclusive empirical evidence. A potential source of ambivalent empirical results on the same hypothesis is design heterogeneity—variation in true effect sizes across various reasonable experimental research protocols. To provide further evidence on whether competition affects moral behavior and to examine whether the generalizability of a single experimental study is jeopardized by design heterogeneity, we invited independent research teams to contribute experimental designs to a crowd-sourced project. In a large-scale online data collection, 18,123 experimental participants were randomly allocated to 45 randomly selected experimental designs out of 95 submitted designs. We find a small adverse effect of competition on moral behavior in a meta-analysis of the pooled data. The crowd-sourced design of our study allows for a clean identification and estimation of the variation in effect sizes above and beyond what could be expected due to sampling variance. We find substantial design heterogeneity—estimated to be about 1.6 times as large as the average standard error of effect size estimates of the 45 research designs—indicating that the informativeness and generalizability of results based on a single experimental design are limited. Drawing strong conclusions about the underlying hypotheses in the presence of substantive design heterogeneity requires moving toward much larger data collections on various experimental designs testing the same hypothesis

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction
    corecore