2,800 research outputs found

    Colorado Native Plant Society Newsletter, Vol. 9 No. 1, January-February 1984

    Get PDF
    The Colorado Native Plant Society Newsletter will be published on a bimonthly basis. The contents will consist primarily of a calendar of events, notes of interest, editorials, listings of new members and conservation news. Until there is a Society journal, the Newsletter will include short articles also. The deadline for the Newsletter is one month prior to its release.https://epublications.regis.edu/aquilegia/1023/thumbnail.jp

    Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery

    Get PDF
    Cancer cell metabolism leads to a uniquely acidic microenvironment in solid tumors, but exploiting the labile extracellular pH differences between cancer and normal tissues for clinical use has been challenging. Here we describe the clinical translation of ONM-100, a nanoparticle-based fluorescent imaging agent. This is comprised of an ultra-pH sensitive amphiphilic polymer, conjugated with indocyanine green, which rapidly and irreversibly dissociates to fluoresce in the acidic extracellular tumor microenvironment due to the mechanism of nanoscale macromolecular cooperativity. Primary outcomes were safety, pharmacokinetics and imaging feasilibity of ONM-100. Secondary outcomes were to determine a range of safe doses of ONM-100 for intra-operative imaging using commonly used fluorescence camera systems. In this study (Netherlands National Trial Register #7085), we report that ONM-100 was well tolerated, and four solid tumor types could be visualized both in- and ex vivo in thirty subjects. ONM-100 enables detection of tumor-positive resection margins in 9/9 subjects and four additional otherwise missed occult lesions. Consequently, this pH-activatable optical imaging agent may be clinically beneficial in differentiating previously unexploitable narrow physiologic differences

    The LHCb Silicon Inner Tracker

    Get PDF
    The inner part of the LHCb main tracking system will be realized in a silicon microstrip technology. The experimental requirements suggest approximately 20 cm-long ladders and a readout pitch of around 200 m. The LHCb Inner Tracker system will consist of three tracking stations having a total of 12 detection layers summing to an overall silicon surface area of approximately 4.2 m2. A report about the status of the current R&D of the silicon ladders and tracking stations of the LHCb Inner Tracker is given

    Angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay in the low-q2q^2 region

    Full text link
    An angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions

    Measurement of CPCP asymmetries and polarisation fractions in Bs0K0Kˉ0B_s^0 \rightarrow K^{*0}\bar{K}{}^{*0} decays

    Full text link
    An angular analysis of the decay Bs0K0Kˉ0B_s^0 \rightarrow K^{*0}\bar{K}{}^{*0} is performed using pppp collisions corresponding to an integrated luminosity of 1.01.0 fb1{fb}^{-1} collected by the LHCb experiment at a centre-of-mass energy s=7\sqrt{s} = 7 TeV. A combined angular and mass analysis separates six helicity amplitudes and allows the measurement of the longitudinal polarisation fraction fL=0.201±0.057(stat.)±0.040(syst.)f_L = 0.201 \pm 0.057 {(stat.)} \pm 0.040{(syst.)} for the Bs0K(892)0Kˉ(892)0B_s^0 \rightarrow K^*(892)^0 \bar{K}{}^*(892)^0 decay. A large scalar contribution from the K0(1430)K^{*}_{0}(1430) and K0(800)K^{*}_{0}(800) resonances is found, allowing the determination of additional CPCP asymmetries. Triple product and direct CPCP asymmetries are determined to be compatible with the Standard Model expectations. The branching fraction B(Bs0K(892)0Kˉ(892)0)\mathcal{B}(B_s^0 \rightarrow K^*(892)^0 \bar{K}{}^*(892)^0) is measured to be (10.8±2.1 (stat.)±1.4 (syst.)±0.6 (fd/fs))×106(10.8 \pm 2.1 {\ \rm (stat.)} \pm 1.4 {\ \rm (syst.)} \pm 0.6 \ (f_d/f_s) ) \times 10^{-6}

    Technical design of the phase I Mu3e experiment

    Full text link
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay at branching fractions above . A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of . We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements
    corecore