2 research outputs found

    Feasibility of the Big 5—Jena eCS Protocol

    Get PDF
    Purpose!#!The most common protocols in the initial diagnostic of acute ischemic stroke do not assess cardiogenic or aortic causes of embolism. These are usually evaluated later by transthoracic (TTE) or transesophageal (TEE) echocardiography. This study aimed to evaluate the feasibility of a diagnostic tool for thoracic cardiovascular thrombi according to the first experience with a new extended cardio-stroke protocol (Big 5-Jena eCS protocol) in acute stroke patients.!##!Methods!#!Retrospective analyses of the tomography scans database of the Jena University Hospital were performed. We included a total of 67 patients in the feasibility analyses, based on the evaluation of three outcomes.!##!Results!#!Primary outcome: the Big 5-Jena eCS protocol was able to detect thoracic cardiovascular thrombi in a total of 20 patients in different locations including the arch of the aorta, the aortic valve, the left atrium, the left atrial appendage, the left ventricle, and the pulmonary arteries. Secondary outcome: implementating the protocol did not result in a significant elevation of the radiation exposure compared to traditional protocols. Tertiary outcome: the new protocol identified seven cases that were considered negative by echocardiography.!##!Conclusion!#!The implementation of an extended cardio-stroke protocol is feasible, no significantly time-consuming, acquiring assessable imaging, and maintaining radiation exposure acceptable. The Big 5-Jena eCS protocol was also able to detect some thrombi not reported by TTE or TEE; however, due to our data's explorative character, a conclusive comparison with cardiac ultrasound is not possible. A prospective pilot study and clinical trials should be conducted to assess the diagnostic accuracy of this protocol compared to echocardiography and determine the potential impact on diagnostic and treatment decisions

    Prenatal radiation exposure in diagnostic and interventional radiology

    No full text
    Background The exposure of a pregnant woman to X-rays is an event that can cause uncertainty for all concerned. This review provides guidance on how to assess such a situation and how to determine the dose to the unborn child. In general, the use of X-rays in pregnant women in radiology should be avoided. If possible, alternatives should be used, or examinations postponed to a time after the pregnancy. This review gives a summary of the procedure for determining the radiation exposure of a pregnant woman.Method Based on the previous report of 2002 and the literature on prenatal radiation exposure published thereafter, the DGMP/DRG report on the procedure for the assessment of prenatal radiation exposure was adapted to the current state of science and technology.Results Typically, only relatively low radiation exposures of less than 20 mSv occur for the unborn child in X-ray diagnostics in the vast majority of cases. At these dose level the additional risk of damage to the embryo or fetus caused by the radiation is low and therefore only a rough conservative estimate using tabulated values are made. Only in a few types of examination (CT and interventional radiology) higher doses values might occur in the uterus. Instead of dose estimates (step 1 in the two-step model) in these cases the calculation of dose (step 2) are required and further action by the physician may be necessary.Conclusions During the assessment, it is useful to initially use simple conservative estimation procedures to quickly determine whether a case falls into this large group less than 20 mSv, where there is a very low risk to the unborn child. If this is the case, the pregnant woman should be informed immediately by the doctor who performed the examination/treatment. This avoids a psychological burden on the patient. The DGMP/DRG report suggests a relatively simple, clearly structured procedure with advantages for all parties involved (physician, medical physics experts, MTRA and patient)
    corecore