31 research outputs found

    Asymmetric Synthesis of a Glucagon Receptor Antagonist via Friedel–Crafts Alkylation of Indole with Chiral α‑Phenyl Benzyl Cation

    No full text
    Development of a practical asymmetric synthesis of a glucagon receptor antagonist drug candidate for the treatment of type 2 diabetes is described. The antagonist consists of a 1,1,2,2-tetrasubstituted ethane core substituted with a propyl and three aryl groups including a fluoro-indole. The key steps to construct the ethane core and the two stereogenic centers involved a ketone arylation, an asymmetric hydrogenation via dynamic kinetic resolution, and an <i>anti</i>-selective Friedel–Crafts alkylation of a fluoro-indole with a chiral α-phenyl benzyl cation. We also developed two new efficient syntheses of the fluoro-indole, including an unusual Larock-type indole synthesis and a Sugasawa-heteroannulation route. The described convergent synthesis was used to prepare drug substance in 52% overall yield and 99% ee on multikilogram scales

    Asymmetric Synthesis of a Glucagon Receptor Antagonist via Friedel–Crafts Alkylation of Indole with Chiral α‑Phenyl Benzyl Cation

    No full text
    Development of a practical asymmetric synthesis of a glucagon receptor antagonist drug candidate for the treatment of type 2 diabetes is described. The antagonist consists of a 1,1,2,2-tetrasubstituted ethane core substituted with a propyl and three aryl groups including a fluoro-indole. The key steps to construct the ethane core and the two stereogenic centers involved a ketone arylation, an asymmetric hydrogenation via dynamic kinetic resolution, and an <i>anti</i>-selective Friedel–Crafts alkylation of a fluoro-indole with a chiral α-phenyl benzyl cation. We also developed two new efficient syntheses of the fluoro-indole, including an unusual Larock-type indole synthesis and a Sugasawa-heteroannulation route. The described convergent synthesis was used to prepare drug substance in 52% overall yield and 99% ee on multikilogram scales
    corecore