553 research outputs found
Non locality, closing the detection loophole and communication complexity
It is shown that the detection loophole which arises when trying to rule out
local realistic theories as alternatives for quantum mechanics can be closed if
the detection efficiency is larger than
where is the dimension of the entangled system. Furthermore it is argued
that this exponential decrease of the detector efficiency required to close the
detection loophole is almost optimal. This argument is based on a close
connection that exists between closing the detection loophole and the amount of
classical communication required to simulate quantum correlation when the
detectors are perfect.Comment: 4 pages Latex, minor typos correcte
Experimental implementation of a NMR entanglement witness
Entanglement witnesses (EW) allow the detection of entanglement in a quantum
system, from the measurement of some few observables. They do not require the
complete determination of the quantum state, which is regarded as a main
advantage. On this paper it is experimentally analyzed an entanglement witness
recently proposed in the context of Nuclear Magnetic Resonance (NMR)
experiments to test it in some Bell-diagonal states. We also propose some
optimal entanglement witness for Bell-diagonal states. The efficiency of the
two types of EW's are compared to a measure of entanglement with tomographic
cost, the generalized robustness of entanglement. It is used a GRAPE algorithm
to produce an entangled state which is out of the detection region of the EW
for Bell-diagonal states. Upon relaxation, the results show that there is a
region in which both EW fails, whereas the generalized robustness still shows
entanglement, but with the entanglement witness proposed here with a better
performance
Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia
Item does not contain fulltex
Chiral symmetry breaking, color superconductivity and color neutral quark matter: a variational approach
We investigate the vacuum realignment for chiral symmetry breaking and color
superconductivity at finite density in Nambu-Jona-Lasinio model in a
variational method. The treatment allows us to investigate simultaneous
formation of condensates in quark antiquark as well as in diquark channels. The
methodology involves an explicit construction of a variational ground state and
minimisation of the thermodynamic potential. Color and electric charge
neutrality conditions are imposed through introduction of appropriate chemical
potentials. Color and flavor dependent condensate functions are determined
through minimisation of the thermodynamic potential. The equation of state is
calculated. Simultaneous existence of a mass gap and superconducting gap is
seen in a small window of quark chemical potential within the model when charge
neutrality conditions are not imposed. Enforcing color and electric charge
neutrality conditions gives rise to existence of gapless superconducting modes
depending upon the magnitude of the gap and the difference of the chemical
potentials of the condensing quarks.Comment: 13 pages, 6 figures,to appear in Phys. Rev.
- …