231 research outputs found

    Hyperbolic Universes with a Horned Topology and the CMB Anisotropy

    Full text link
    We analyse the anisotropy of the cosmic microwave background (CMB) in hyperbolic universes possessing a non-trivial topology with a fundamental cell having an infinitely long horn. The aim of this paper is twofold. On the one hand, we show that the horned topology does not lead to a flat spot in the CMB sky maps in the direction of the horn as stated in the literature. On the other hand, we demonstrate that a horned topology having a finite volume could explain the suppression of the lower multipoles in the CMB anisotropy as observed by COBE and WMAP

    Combined GNSS reflectometry–refractometry for automated and continuous in situ surface mass balance estimation on an Antarctic ice shelf

    Get PDF
    Reliable in situ surface mass balance (SMB) estimates in polar regions are scarce due to limited spatial and temporal data availability. This study aims at deriving automated and continuous specific SMB time series for fast-moving parts of ice sheets and shelves (flow velocity &gt; 10 m a−1) by developing a combined global navigation satellite system (GNSS) reflectometry and refractometry (GNSS-RR) method. In situ snow density, snow water equivalent (SWE), and snow deposition or erosion are estimated simultaneously as an average over an area of several square meters and independently on weather conditions. The combined GNSS-RR method is validated and investigated regarding its applicability to a moving, high-latitude ice shelf. A combined GNSS-RR system was therefore installed in November 2021 on the Ekström ice shelf (flow velocity ≈ 150 m a−1) in Dronning Maud Land, Antarctica. The reflected and refracted GNSS observations from the site are post-processed to obtain snow accumulation (deposition and erosion), SWE, and snow density estimates with a 15 min temporal resolution. The results of the first 16 months of data show a high level of agreement with manual and automated reference observations from the same site. Snow accumulation, SWE, and density are derived with uncertainties of around 9 cm, 40 kg m−2 a−1, and 72 kg m−3, respectively. This pilot study forms the basis for extending observational networks with GNSS-RR capabilities, particularly in polar regions. Regional climate models, local snow modeling, and extensive remote sensing data products will profit from calibration and validation based on such in situ time series, especially if many such sensors will be deployed over larger regional scales.</p

    Ellipticity of Structures in CMB Sky Maps

    Full text link
    We study the ellipticity of contour lines in the sky maps of the cosmic microwave background (CMB) as well as other measures of elongation. The sensitivity of the elongation on the resolution of the CMB maps which depends on the pixelization and the beam profile of the detector, is investigated. It is shown that the current experimental accuracy does not allow to discriminate between cosmological models which differ in curvature by Delta Omega_tot=0.05. Analytical expressions are given for the case that the statistical properties of the CMB are those of two-dimensional Gaussian random fields

    Abdominal, perineal, and genital soft tissue reconstruction with pedicled anterolateral thigh perforator flaps

    Full text link
    Background Pedicled perforator flaps have become a contemporary alternative to muscle flaps for soft tissue reconstruction as they have reduced donor site morbidity, avoid the need for microsurgical transfer, and are versatile and reliable. The anterolateral thigh (ALT) flap was first introduced as a free flap and has since gained popularity as a pedicled flap. Here we review our experience using pedicled ALT flaps for regional soft tissue reconstruction. Methods We retrospectively reviewed all patients who underwent loco-regional soft tissue reconstruction using pedicled ALT flaps between March 2014 and October 2018, with the goal of identifying potential applications of pedicled ALT flaps. The following aspects of each case were reviewed: patient demographics, defect location and size, comorbidities such as previous radiotherapy, flap details, clinical follow-up, and postoperative complications. Results Our analysis demonstrates the versatility of pedicled ALT flaps in a variety of indications to successfully cover large abdominal, perineal, and genital soft tissue defects. Depending on the patient’s needs to achieve more bulk or stability in the reconstruction, the ALT flap was individually tailored with underlying muscle or fascia. The average follow-up was 7 months (range: 3–13 months). Conclusions Pedicled ALT flaps are a valuable reconstructive option for soft tissue defects located within the pedicle’s range, from the lower abdomen to the perianal region. These flaps are usually raised from a non-irradiated donor site and are sufficient for covering extensive soft tissue defects. Three-dimensional reconstruction of the defect using pedicled ALT flaps allows for anatomical function and minor donor sites

    Comparison of the electrical conductivity of bulk and film Ce1–xZrxO2–d in oxygen-depleted atmospheres at high temperatures

    Get PDF
    Featuring high levels of achievable oxygen non-stoichiometry d, Ce1-xZrxO2-d solid solutions (CZO) are crucial for application as oxygen storage materials in, for example, automotive three-way catalytic converters (TWC). The use of CZO in form of films combined with simple manufacturing methods is beneficial in view of device miniaturization and reducing of TWC manufacturing costs. In this study, a comparative microstructural and electrochemical characterization of film and conventional bulk CZO is performed using X-ray diffractometry, scanning electron microscopy, and impedance spectroscopy. The films were composed of grains with dimensions of 100 nm or less, and the bulk samples had about 1 lm large grains. The electrical behavior of nanostructured films and coarse-grained bulk CZO (x [ 0) was qualitatively similar at high temperatures and under reducing atmospheres. This is explained by dominating effect of Zr addition, which masks microstructural effects on electrical conductivity, enhances the reducibility, and favors strongly electronic conductivity of CZO at temperatures even 200 K lower than those for pure ceria. The nanostructured CeO 2 films had much higher electrical conductivity with different trends in dependence on temperature and reducing atmospheres than their bulk counterparts. For the latter, the conductivity was dominantly electronic, and microstructural effects were significant at T \ 700 °C. Nanostructural peculiarities of CeO 2 films are assumed to induce their more pronounced ionic conduction at medium oxygen partial pressures and relatively low temperatures. The defect interactions in bulk and film CZO under reducing conditions are discussed in the framework of conventional defect models for ceria

    Can one hear the shape of the Universe?

    Get PDF
    It is shown that the recent observations of NASA's explorer mission "Wilkinson Microwave Anisotropy Probe" (WMAP) hint that our Universe may possess a non-trivial topology. As an example we discuss the Picard space which is stretched out into an infinitely long horn but with finite volume.Comment: 4 page

    Linking the electrical conductivity and non-stoichiometry of thin film Ce1−xZrxO2−δ by a resonant nanobalance approach

    Get PDF
    Bulk ceria-zirconia solid solutions (Ce1−xZrxO2−δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10−24–0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2−δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1−xZrxO2−δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2−δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10−14 bar. The defect interactions in Ce1−xZrxO2−δ are analyzed in the framework of defect models for ceria and zirconia

    Design of an Active Multispectral SWIR Camera System for Skin Detection and Face Verification

    Get PDF
    Biometric face recognition is becoming more frequently used in different application scenarios. However, spoofing attacks with facial disguises are still a serious problem for state of the art face recognition algorithms. This work proposes an approach to face verification based on spectral signatures of material surfaces in the short wave infrared (SWIR) range. They allow distinguishing authentic human skin reliably from other materials, independent of the skin type. We present the design of an active SWIR imaging system that acquires four-band multispectral image stacks in real-time. The system uses pulsed small band illumination, which allows for fast image acquisition and high spectral resolution and renders it widely independent of ambient light. After extracting the spectral signatures from the acquired images, detected faces can be verified or rejected by classifying the material as "skin" or "no-skin". The approach is extensively evaluated with respect to both acquisition and classification performance. In addition, we present a database containing RGB and multispectral SWIR face images, as well as spectrometer measurements of a variety of subjects, which is used to evaluate our approach and will be made available to the research community by the time this work is published
    • …
    corecore