55 research outputs found
Periaqueductal Grey Stimulation Induced Panic-Like Behaviour Is Accompanied by Deactivation of the Deep Cerebellar Nuclei
Until recently, the cerebellum was primarily considered to be a structure involved in motor behaviour. New anatomical and clinical evidence has shown that the cerebellum is also involved in higher cognitive functions and non-motor behavioural changes. Functional imaging in patients with anxiety disorders and in cholecystokinin tetrapeptide-induced panic-attacks shows activation changes in the cerebellum. Deep brain stimulation of the dorsolateral periaqueductal grey (dlPAG) and the ventromedial hypothalamus (VMH) in rats has been shown to induce escape behaviour, which mimics a panic attack in humans. We used this animal model to study the neuronal activation in the deep cerebellar nuclei (DCbN) using c-Fos immunohistochemistry. c-Fos expression in the DCbN decreased significantly after inducing escape behaviour by stimulation of the dlPAG and the VMH, indicating that the DCbN were deactivated. This study demonstrates that the DCbN are directly or indirectly involved in panic attacks. We suggest that the cerebellum plays a role in the selection of relevant information, and that deactivation of the cerebellar nuclei is required to allow inappropriate behaviour to occur, such as panic attacks
Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA
Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions
The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2.
BACKGROUND: A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling.
RESULTS: Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2.
CONCLUSIONS: Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.journal articleresearch support, non-u.s. gov't2012 Sep 182012 09 18importe
Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5−/− Mice
Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5−/− mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35–70-fold and 5–12-fold increased in Abcg5−/− mice (P < 0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P < 0.01) and 24(S)-hydroxycholesterol (P < 0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P < 0.01) in the cortex. However, Abcg5−/− and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5−/− mice was slightly higher compared to Abcg5+/+ mice (P < 0.001). In conclusion, plant sterols in the brains of Abcg5−/− mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition
Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia
Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 106MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE
Increased Number of Cerebellar Granule Cells and Astrocytes in the Internal Granule Layer in Sheep Following Prenatal Intra-amniotic Injection of Lipopolysaccharide
Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies
Neurostimulatory and ablative treatment options in major depressive disorder: a systematic review
Introduction Major depressive disorder is one of the most disabling and common diagnoses amongst psychiatric disorders, with a current worldwide prevalence of 5-10% of the general population and up to 20-25% for the lifetime period. Historical perspective Nowadays, conventional treatment includes psychotherapy and pharmacotherapy; however, more than 60% of the treated patients respond unsatisfactorily, and almost one fifth becomes refractory to these therapies at long-term follow-up. Nonpharmacological techniques Growing social incapacity and economic burdens make the medical community strive for better therapies, with fewer complications. Various nonpharmacological techniques like electroconvulsive therapy, vagus nerve stimulation, transcranial magnetic stimulation, lesion surgery, and deep brain stimulation have been developed for this purpose. Discussion We reviewed the literature from the beginning of the twentieth century until July 2009 and described the early clinical effects and main reported complications of these methods. © The Author(s) 2010.Link_to_subscribed_fulltex
Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence
Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity
Selective phosphodiesterase inhibitors: a promising target for cognition enhancement
# The Author(s) 2008. This article is published with open access at Springerlink.com Rationale One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer’s disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. Objective The aim of this review was to provide an overvie
- …