21,720 research outputs found
Ground-state energy of a high-density electron gas in a strong magnetic field
The high-density electron gas in a strong magnetic field B and at zero
temperature is investigated. The quantum strong-field limit is considered in
which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to
the Gell-Mann Brueckner expression of the ground-state energy of the field-free
electron gas. The role of the expansion parameter is taken by instead of the field-free Gell-Mann Brueckner
parameter r_s.Comment: 4 pages, 2 figures, to appear in the proceedings of the 1999
International Conference on Strongly Coupled Coulomb Systems (St.Malo
Difference in response reliability predicted by STRFs in the cochlear nuclei of barn owls
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magnocellularis (NM). NA and NM receive input from bifurcating auditory nerve fibers and initiate processing pathways specialized in encoding interaural time (ITD) and level (ILD) differences, respectively. We found that NA neurons, though unable to accurately encode stimulus phase, lock more strongly to the stimulus envelope than NM units. The spectrotemporal receptive fields (STRFs) of NA neurons exhibit a pre-excitatory suppressive field. Using multilinear regression analysis and computational modeling, we show that this feature of STRFs can account for enhanced across-trial response reliability, by locking spikes to the stimulus envelope. Our findings indicate a dichotomy in envelope coding between the time and intensity processing pathways as early as the level of the cochlear nuclei. This allows the ILD processing pathway to encode envelope information with greater fidelity than the ITD processing pathway. Furthermore, we demonstrate that the properties of the neurons’ STRFs can be quantitatively related to spike timing reliability
Creative activities and skills for bright and gifted children to supplement the Scott, Foresman and Company new basic readers for grade two
Thesis (Ed.M.)--Boston Universit
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
The 3-D solar radioastronomy and the structure of the corona and the solar wind
The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind
Nonlinear optics with less than one photon
We demonstrate suppression and enhancement of spontaneous parametric down-
conversion via quantum interference with two weak fields from a local
oscillator (LO). Pairs of LO photons are observed to upconvert with high
efficiency for appropriate phase settings, exhibiting an effective nonlinearity
enhanced by at least 10 orders of magnitude. This constitutes a two-photon
switch, and promises to be useful for a variety of nonlinear optical effects at
the quantum level.Comment: 8 pages, 5 figure
- …