73 research outputs found

    Lepton-Nucleus Interactions within Microscopic Approaches

    Full text link
    This review paper emphasizes the significance of microscopic calculations with quantified theoretical error estimates in studying lepton-nucleus interactions and their implications for electron-scattering and accelerator neutrino-oscillation measurements. We investigate two approaches: Green's Function Monte Carlo and the extended factorization scheme, utilizing realistic nuclear target spectral functions. In our study, we include relativistic effects in Green's Function Monte Carlo and validate the inclusive electron-scattering cross section on carbon using available data. We compare the flux folded cross sections for neutrino-Carbon scattering with T2K and MINERν\nuA experiments, noting the substantial impact of relativistic effects in reducing the theoretical curve strength when compared to MINERν\nuA data. Additionally, we demonstrate that quantum Monte Carlo-based spectral functions accurately reproduce the quasi-elastic region in electron-scattering data and T2K flux folded cross sections. By comparing results from Green's Function Monte Carlo and the spectral function approach, which share a similar initial target state description, we quantify errors associated with approximations in the factorization scheme and the relativistic treatment of kinematics in Green's Function Monte Carlo.Comment: 30 pages, 9 figure

    Safety and efficacy of stereotactic body radiation therapy in the treatment of pulmonary metastases from high grade sarcoma.

    Get PDF
    Introduction. Patients with high-grade sarcoma (HGS) frequently develop metastatic disease thus limiting their long-term survival. Lung metastases (LM) have historically been treated with surgical resection (metastasectomy). A potential alternative for controlling LM could be stereotactic body radiation therapy (SBRT). We evaluated the outcomes from our institutional experience utilizing SBRT. Methods. Sixteen consecutive patients with LM from HGS were treated with SBRT between 2009 and 2011. Routine radiographic and clinical follow-up was performed. Local failure was defined as CT progression on 2 consecutive scans or growth after initial shrinkage. Radiation pneumonitis and radiation esophagitis were scored using Common Toxicity Criteria (CTC) version 3.0. Results. All 16 patients received chemotherapy, and a subset (38%) also underwent prior pulmonary metastasectomy. Median patient age was 56 (12-85), and median follow-up time was 20 months (range 3-43). A total of 25 lesions were treated and evaluable for this analysis. Most common histologies were leiomyosarcoma (28%), synovial sarcoma (20%), and osteosarcoma (16%). Median SBRT prescription dose was 54 Gy (36-54) in 3-4 fractions. At 43 months, local control was 94%. No patient experienced G2-4 radiation pneumonitis, and no patient experienced radiation esophagitis. Conclusions. Our retrospective experience suggests that SBRT for LM from HGS provides excellent local control and minimal toxicity

    Form factor and model dependence in neutrino-nucleus cross section predictions

    Full text link
    To achieve its design goals, the next generation of neutrino-oscillation accelerator experiments requires percent-level predictions of neutrino-nucleus cross sections supplemented by robust estimates of the theoretical uncertainties involved. The latter arise from both approximations in solving the nuclear many-body problem and in the determination of the single- and few-nucleon quantities taken as input by many-body methods. To quantify both types of uncertainty, we compute flux-averaged double-differential cross sections using the Green's function Monte Carlo and spectral function methods as well as different parameterizations of the nucleon axial form factors based on either deuterium bubble-chamber data or lattice quantum chromodynamics calculations. The cross-section results are compared with available experimental data from the MiniBooNE and T2K collaborations. We also discuss the uncertainties associated with N→ΔN\rightarrow \Delta transition form factors that enter the two-body current operator. We quantify the relations between neutrino-nucleus cross section and nucleon form factor uncertainties. These relations enable us to determine the form factor precision targets required to achieve a given cross-section precision.Comment: Minor changes to text and figure label

    Negative quasiprobabilities enhance phase estimation in quantum-optics experiment

    Full text link
    Operator noncommutation, a hallmark of quantum theory, limits measurement precision, according to uncertainty principles. Wielded correctly, though, noncommutation can boost precision. A recent foundational result relates a metrological advantage with negative quasiprobabilities -- quantum extensions of probabilities -- engendered by noncommuting operators. We crystallize the relationship in an equation that we prove theoretically and observe experimentally. Our proof-of-principle optical experiment features a filtering technique that we term partially postselected amplification (PPA). Using PPA, we measure a waveplate's birefringent phase. PPA amplifies, by over two orders of magnitude, the information obtained about the phase per detected photon. In principle, PPA can boost the information obtained from the average filtered photon by an arbitrarily large factor. The filter's amplification of systematic errors, we find, bounds the theoretically unlimited advantage in practice. PPA can facilitate any phase measurement and mitigates challenges that scale with trial number, such as proportional noise and detector saturation. By quantifying PPA's metrological advantage with quasiprobabilities, we reveal deep connections between quantum foundations and precision measurement.Comment: 5 pages, 4 figures in main text; 8 pages, 1 figure in appendice

    Generating a 4-photon Tetrahedron State: Towards Simultaneous Super-sensitivity to Non-commuting Rotations

    Full text link
    It is often thought that the super-sensitivity of a quantum state to an observable comes at the cost of a decreased sensitivity to other non-commuting observables. For example, a squeezed state squeezed in position quadrature is super-sensitive to position displacements, but very insensitive to momentum displacements. This misconception was cleared with the introduction of the compass state, a quantum state equally super-sensitive to displacements in position and momentum. When looking at quantum states used to measure spin rotations, N00N states are known to be more advantageous than classical methods as long as they are aligned to the rotation axis. When considering the estimation of a rotation with unknown direction and amplitude, a certain class of states stands out with interesting properties. These states are equally sensitive to rotations around any axis, are second-order unpolarized, and can possess the rotational properties of platonic solids in particular dimensions. Importantly, these states are optimal for simultaneously estimating the three parameters describing a rotation. In the asymptotic limit, estimating all d parameters describing a transformation simultaneously rather than sequentially can lead to a reduction of the appropriately-weighted sum of the measured parameters' variances by a factor of d. We report the experimental creation and characterization of the lowest-dimensional such state, which we call the "tetrahedron state" due to its tetrahedral symmetry. This tetrahedron state is created in the symmetric subspace of four optical photons' polarization in a single spatial and temporal mode, which behaves as a spin-2 particle. While imperfections due to the hardware limit the performance of our method, we argue that better technology can improve our method to the point of outperforming any other existing strategy in per-photon comparisons.Comment: 13 pages, 6 figure
    • …
    corecore