13,789 research outputs found

    On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process

    Full text link
    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most metrology schemes measure a single parameter of a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationally-complete set of probe states. It is very convenient if this set is group-covariant -- i.e., each element is generated by applying an element of the quantum system's natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon ("biphoton") states, and report experimental studies of different states' sensitivity to small, unknown collective SU(2) rotations ("SU(2) jitter"). Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a-priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.Comment: 10 pages, 5 figure

    Phase Space Tomography of Classical and Nonclassical Vibrational States of Atoms in an Optical Lattice

    Full text link
    Atoms trapped in optical lattice have long been a system of interest in the AMO community, and in recent years much study has been devoted to both short- and long-range coherence in this system, as well as to its possible applications to quantum information processing. Here we demonstrate for the first time complete determination of the quantum phase space distributions for an ensemble of 85Rb^{85}Rb atoms in such a lattice, including a negative Wigner function for atoms in an inverted state.Comment: Submitted to Journal of Optics B: Quantum and Semiclassical Optics. Special issue in connection with the 9th International Conference on Squeezed States and Uncertainty Relations, to be held in Besancon, France, on 2-6 May 200

    Identification of Decoherence-Free Subspaces Without Quantum Process Tomography

    Full text link
    Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the system. Here we propose and demonstrate a protocol which enables one to directly identify a DFS without carrying out a full reconstruction. Our protocol offers an up-to-quadratic speedup over standard process tomography. In this paper, we experimentally identify the DFS of a two-qubit process with 32 measurements rather than the usual 256, characterize the robustness and efficiency of the protocol, and discuss its extension to higher-dimensional systems.Comment: 6 pages, 5 figure

    Conditional probabilities in quantum theory, and the tunneling time controversy

    Get PDF
    It is argued that there is a sensible way to define conditional probabilities in quantum mechanics, assuming only Bayes's theorem and standard quantum theory. These probabilities are equivalent to the ``weak measurement'' predictions due to Aharonov {\it et al.}, and hence describe the outcomes of real measurements made on subensembles. In particular, this approach is used to address the question of the history of a particle which has tunnelled across a barrier. A {\it gedankenexperiment} is presented to demonstrate the physically testable implications of the results of these calculations, along with graphs of the time-evolution of the conditional probability distribution for a tunneling particle and for one undergoing allowed transmission. Numerical results are also presented for the effects of loss in a bandgap medium on transmission and on reflection, as a function of the position of the lossy region; such loss should provide a feasible, though indirect, test of the present conclusions. It is argued that the effects of loss on the pulse {\it delay time} are related to the imaginary value of the momentum of a tunneling particle, and it is suggested that this might help explain a small discrepancy in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts

    Optimum design of corrugated wide columns

    Get PDF
    Optimum design of wide corrugated columns, and sheet thickness effect on column weigh
    corecore