744 research outputs found

    Effects of cannabinoids on gene expression

    Get PDF

    The connection between BRG1, CTCF and topoisomerases at TAD boundaries

    Get PDF
    The eukaryotic genome is partitioned into topologically associating domains (TADs). Despite recent advances characterizing TADs and TAD boundaries, the organization of these structures is an important dimension of genome architecture and function that is not well understood. Recently, we demonstrated that knockdown of BRG1, an ATPase driving the chromatin remodeling activity of mammalian SWI/SNF enzymes, globally alters long-range genomic interactions and results in a reduction of TAD boundary strength. We provided evidence suggesting that this effect may be due to BRG1 affecting nucleosome occupancy around CTCF sites present at TAD boundaries. In this review, we elaborate on our findings and speculate that BRG1 may contribute to the regulation of the structural and functional properties of chromatin at TAD boundaries by affecting the function or the recruitment of CTCF and DNA topoisomerase complexes

    Nuclear structure-gene expression interrelationships: implications for aberrant gene expression in cancer

    Get PDF
    There is long-standing recognition that transformed and tumor cells exhibit striking alterations in nuclear morphology as well as in the representation and intranuclear distribution of nucleic acids and regulatory factors. Parameters of nuclear structure support cell growth and phenotypic properties of cells by facilitating the organization of genes, replication and transcription sites, chromatin remodeling complexes, transcripts, and regulatory factors in structurally and functionally definable subnuclear domains within the three-dimensional context of nuclear architecture. The emerging evidence for functional interrelationships of nuclear structure and gene expression is consistent with linkage of tumor-related modifications in nuclear organization to compromised gene regulation during the onset and progression of cancer

    Expression of cell cycle regulatory factors in differentiating osteoblasts: postproliferative up-regulation of cyclins B and E

    Get PDF
    The representation of cyclins and cyclin-dependent kinases (cdks) was analyzed during progressive development of the bone cell phenotype in cultures of normal diploid rat calvarial osteoblasts. Three developmental stages were examined: (a) proliferation; (b) monolayer confluency; and (c) mineralization of the bone extracellular matrix. We demonstrate that the presence of cyclins and cdks is not restricted to the proliferation period. Consistent with their role in cell cycle progression, cdc2 and cdk2 decrease postproliferatively. However, cdk4 and cyclins A, B, and D1 persist in confluent cells. Cyclin E is significantly up-regulated during the extracellular matrix mineralization developmental period. Examination of the cytoplasmic levels of these cell cycle regulatory proteins indicates a marked increase in cyclin B in the late differentiation stage. The elevation of nuclear cyclin E and cytoplasmic cyclin B is not observed in osteoblasts maintained under culture conditions that do not support differentiation. Furthermore, treatment with transforming growth factor beta for 48 h during the proliferation period renders the cells incompetent for differentiation and abrogates the postproliferative up-regulation of cyclins B and E. Density-induced growth inhibition of ROS 17/2.8 osteosarcoma cells is not accompanied by up-regulation of nuclear cyclin E and cytoplasmic cyclin B when compared to the proliferation period. This observation is consistent with abrogation of both growth control and differentiation regulatory mechanisms in tumor cells. These results suggest that cell cycle regulatory proteins function not only during proliferation but may also play a role in normal diploid osteoblast differentiation

    runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins

    Get PDF
    Expression of the bone sialoprotein (BSP) gene, a marker of bone formation, is largely restricted to cells in mineralized tissues. Recent studies have shown that the Cbfa1 (also known as Runx2, AML-3, and PEBP2alphaA) transcription factor supports commitment and differentiation of progenitor cells to hypertrophic chondrocytes and osteoblasts. This study addresses the functional involvement of Cbfa sites in expression of the Gallus BSP gene. Gel mobility shift analyses with nuclear extracts from ROS 17/2.8 osteoblastic cells revealed that multiple Cbfa consensus sequences are functional Cbfa DNA binding sites. Responsiveness of the 1.2-kb Gallus BSP promoter to Cbfa factors Cbfa1, Cbfa2, and Cbfa3 was assayed in osseous and nonosseous cells. Each of the Cbfa factors mediated repression of the wild-type BSP promoter, in contrast to their well known activation of various hematopoietic and skeletal phenotypic genes. Suppression of BSP by Cbfa factors was not observed in BSP promoters in which Cbfa sites were deleted or mutated. Expression of the endogenous BSP gene in Gallus osteoblasts was similarly downregulated by forced expression of Cbfa factors. Our data indicate that Cbfa repression of the BSP promoter does not involve the transducin-like enhancer (TLE) proteins. Neither coexpression of TLE1 or TLE2 nor the absence of the TLE interaction motif of Cbfa1 (amino acids 501 to 513) influenced repressor activity. However, removal of the C terminus of Cbfa1 (amino acids 362 to 513) relieved suppression of the BSP promoter. Our results, together with the evolutionary conservation of the seven Cbfa sites in the Gallus and human BSP promoters, suggest that suppressor activity by Cbfa is of significant physiologic consequence and may contribute to spatiotemporal expression of BSP during bone development

    Forced expression of the interferon regulatory factor 2 oncoprotein causes polyploidy and cell death in FDC-P1 myeloid hematopoietic progenitor cells

    Get PDF
    The IFN regulatory factor-2 (IRF-2) oncoprotein controls the cell cycle-dependent expression of histone H4 genes during S phase and may function as a component of an E2F-independent mechanism to regulate cell growth. To investigate the role of IRF-2 in control of cell proliferation, we have constructed a stable FDC-P1 cell line (F2) in which expression of IRF-2 is doxycycline (DOX)-inducible, and a control cell line (F0). Both the F2 and F0 cell lines were synchronized in the G1 phase by isoleucine deprivation, and IRF-2 was induced by DOX on release of cells from the cell cycle block. Flow cytometric analyses indicated that forced expression of IRF-2 has limited effects on cell cycle progression before the first mitosis. However, continued cell growth in the presence of elevated IRF-2 levels results in polyploidy (\u3e4n) or genomic disintegration (\u3c2n) and cell death. Western blot analyses revealed that the levels of the cell cycle regulatory proteins cyclin B1 and the cyclin-dependent kinase (CDK)-inhibitory protein p27 are selectively increased. These changes occur concomitant with a significant elevation in the levels of the FAS-L protein, which is the ligand of the FAS (Apo1/CD95) receptor. We also found a subtle change in the ratio of the apoptosis-promoting Bax protein and the antiapoptotic Bcl-2 protein. Hence, IRF-2 induces a cell death response involving the Fas/FasL apoptotic pathway in FDC-P1 cells. Our data suggest that the IRF-2 oncoprotein regulates a critical cell cycle checkpoint that controls progression through G2 and mitosis in FDC-P1 hematopoietic progenitor cells

    Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells

    Get PDF
    Wnt signaling is implicated in bone formation and activated in breast cancer cells promoting primary and metastatic tumor growth. A compelling question is whether osteogenic miRNAs that increase Wnt activity for bone formation are aberrantly expressed in breast tumor cells to support metastatic bone disease. Here we report that miR-218-5p is highly expressed in bone metastases from breast cancer patients, but is not detected in normal mammary epithelial cells. Furthermore, inhibition of miR-218-5p impaired the growth of bone metastatic MDA-MB-231 cells in the bone microenvironment in vivo. These findings indicate a positive role for miR-218-5p in bone metastasis. Bioinformatic and biochemical analyses revealed a positive correlation between aberrant miR-218-5p expression and activation of Wnt signaling in breast cancer cells. Mechanistically, miR-218-5p targets the Wnt inhibitors Sclerostin (SOST) and sFRP-2, which highly enhances Wnt signaling. In contrast, delivery of antimiR-218-5p decreased Wnt activity and the expression of metastasis-related genes, including bone sialoprotein (BSP/IBSP), osteopontin (OPN/SPP1) and CXCR-4, implicating a Wnt/miR-218-5p regulatory network in bone metastatic breast cancer. Furthermore, miR-218-5p also mediates the Wnt-dependent up-regulation of PTHrP, a key cytokine promoting cancer-induced osteolysis. Antagonizing miR-218-5p reduced the expression of PTHrP and Rankl, inhibited osteoclast differentiation in vitro and in vivo, and prevented the development of osteolytic lesions in a preclinical metastasis model. We conclude that pathological elevation of miR-218-5p in breast cancer cells activates Wnt signaling to enhance metastatic properties of breast cancer cells and cancer-induced osteolytic disease, suggesting that miR-218-5p could be an attractive therapeutic target for preventing disease progression

    Transcriptional Auto-Regulation of RUNX1 P1 Promoter

    Get PDF
    RUNX1 a member of the family of runt related transcription factors (RUNX), is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5\u27UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription

    A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene

    Get PDF
    Key components of DNA replication and the basal transcriptional machinery as well as several tissue-specific transcription factors are compartmentalized in specialized nuclear domains. In the present study, we show that determinants of subnuclear targeting of the bone-related Runx2/Cbfa1 protein reside in the C-terminus. With a panel of C-terminal mutations, we further demonstrate that targeting of Runx2 to discrete subnuclear foci is mediated by a 38 amino acid sequence (aa 397-434). This nuclear matrix-targeting signal (NMTS) directs the heterologous Gal4 protein to nuclear-matrix-associated Runx2 foci and enhances transactivation of a luciferase gene controlled by Gal4 binding sites. Importantly, we show that targeting of Runx2 to the NM-associated foci contributes to transactivation of the osteoblast-specific osteocalcin gene in osseous cells. Taken together, these findings identify a critical component of the mechanisms mediating Runx2 targeting to subnuclear foci and provide functional linkage between subnuclear organization of Runx2 and bone-specific transcriptional control

    Nuclear matrix proteins distinguish normal diploid osteoblasts from osteosarcoma cells

    Get PDF
    Interrelationships between nuclear architecture and gene expression were examined by comparing the representation of nuclear matrix proteins in ROS 17/2.8 rat and MG-63 human osteosarcoma cells with those in normal diploid osteoblasts. The tumor-derived cells coexpress genes which are expressed in a sequential and mutually exclusive manner during the progressive stages of osteoblast differentiation. In osteosarcoma cells two-dimensional electrophoretic analysis indicates a composite representation of nuclear matrix proteins characteristic of both the proliferative and postproliferative periods of osteoblast phenotype development. In addition, nuclear matrix proteins unique to the tumor cells and the absence of nuclear matrix proteins found only in normal diploid osteoblasts are observed. Tumor-specific nuclear matrix proteins include those expressed in a proliferation-dependent and independent manner. There is a parallel relationship between nuclear matrix proteins and the expression of cell growth and tissue-specific genes during osteoblast differentiation and in osteosarcoma cells where the developmental sequence of gene expression has been abrogated. Nuclear matrix proteins therefore provide markers reflecting defined periods of bone cell differentiation and phenotypic characteristics of an osteosarcoma
    • …
    corecore